Spaces:
Runtime error
Runtime error
File size: 14,481 Bytes
cc0dd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import List, Optional, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import build_norm_layer
from mmengine.model import BaseModule
from mmpretrain.models.backbones.hivit import BlockWithRPE
from mmpretrain.registry import MODELS
from ..backbones.vision_transformer import TransformerEncoderLayer
from ..utils import build_2d_sincos_position_embedding
class PatchSplit(nn.Module):
"""The up-sample module used in neck (transformer pyramid network)
Args:
dim (int): the input dimension (channel number).
fpn_dim (int): the fpn dimension (channel number).
norm_cfg (dict): Config dict for normalization layer.
Defaults to ``dict(type='LN')``.
"""
def __init__(self, dim, fpn_dim, norm_cfg):
super().__init__()
_, self.norm = build_norm_layer(norm_cfg, dim)
self.reduction = nn.Linear(dim, fpn_dim * 4, bias=False)
self.fpn_dim = fpn_dim
def forward(self, x):
B, N, H, W, C = x.shape
x = self.norm(x)
x = self.reduction(x)
x = x.reshape(B, N, H, W, 2, 2,
self.fpn_dim).permute(0, 1, 2, 4, 3, 5,
6).reshape(B, N, 2 * H, 2 * W,
self.fpn_dim)
return x
@MODELS.register_module()
class iTPNPretrainDecoder(BaseModule):
"""The neck module of iTPN (transformer pyramid network).
Args:
num_patches (int): The number of total patches. Defaults to 196.
patch_size (int): Image patch size. Defaults to 16.
in_chans (int): The channel of input image. Defaults to 3.
embed_dim (int): Encoder's embedding dimension. Defaults to 512.
fpn_dim (int): The fpn dimension (channel number).
fpn_depth (int): The layer number of feature pyramid.
decoder_embed_dim (int): Decoder's embedding dimension.
Defaults to 512.
decoder_depth (int): The depth of decoder. Defaults to 8.
decoder_num_heads (int): Number of attention heads of decoder.
Defaults to 16.
mlp_ratio (int): Ratio of mlp hidden dim to decoder's embedding dim.
Defaults to 4.
norm_cfg (dict): Normalization layer. Defaults to LayerNorm.
reconstruction_type (str): The itpn supports 2 kinds of supervisions.
Defaults to 'pixel'.
num_outs (int): The output number of neck (transformer pyramid
network). Defaults to 3.
predict_feature_dim (int): The output dimension to supervision.
Defaults to None.
init_cfg (Union[List[dict], dict], optional): Initialization config
dict. Defaults to None.
"""
def __init__(self,
num_patches: int = 196,
patch_size: int = 16,
in_chans: int = 3,
embed_dim: int = 512,
fpn_dim: int = 256,
fpn_depth: int = 2,
decoder_embed_dim: int = 512,
decoder_depth: int = 6,
decoder_num_heads: int = 16,
mlp_ratio: int = 4,
norm_cfg: dict = dict(type='LN', eps=1e-6),
reconstruction_type: str = 'pixel',
num_outs: int = 3,
qkv_bias: bool = True,
qk_scale: Optional[bool] = None,
drop_rate: float = 0.0,
attn_drop_rate: float = 0.0,
predict_feature_dim: Optional[float] = None,
init_cfg: Optional[Union[List[dict], dict]] = None) -> None:
super().__init__(init_cfg=init_cfg)
self.num_patches = num_patches
assert reconstruction_type in ['pixel', 'clip'], \
'iTPN method only support `pixel` and `clip`, ' \
f'but got `{reconstruction_type}`.'
self.reconstruction_type = reconstruction_type
self.num_outs = num_outs
self.build_transformer_pyramid(
num_outs=num_outs,
embed_dim=embed_dim,
fpn_dim=fpn_dim,
fpn_depth=fpn_depth,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
rpe=False,
norm_cfg=norm_cfg,
)
# merge the output
self.decoder_embed = nn.ModuleList()
self.decoder_embed.append(
nn.Sequential(
nn.LayerNorm(fpn_dim),
nn.Linear(fpn_dim, decoder_embed_dim, bias=True),
))
if self.num_outs >= 2:
self.decoder_embed.append(
nn.Sequential(
nn.LayerNorm(fpn_dim),
nn.Linear(fpn_dim, decoder_embed_dim // 4, bias=True),
))
if self.num_outs >= 3:
self.decoder_embed.append(
nn.Sequential(
nn.LayerNorm(fpn_dim),
nn.Linear(fpn_dim, decoder_embed_dim // 16, bias=True),
))
if reconstruction_type == 'pixel':
self.mask_token = nn.Parameter(
torch.zeros(1, 1, decoder_embed_dim))
# create new position embedding, different from that in encoder
# and is not learnable
self.decoder_pos_embed = nn.Parameter(
torch.zeros(1, self.num_patches, decoder_embed_dim),
requires_grad=False)
self.decoder_blocks = nn.ModuleList([
TransformerEncoderLayer(
decoder_embed_dim,
decoder_num_heads,
int(mlp_ratio * decoder_embed_dim),
qkv_bias=True,
norm_cfg=norm_cfg) for _ in range(decoder_depth)
])
self.decoder_norm_name, decoder_norm = build_norm_layer(
norm_cfg, decoder_embed_dim, postfix=1)
self.add_module(self.decoder_norm_name, decoder_norm)
# Used to map features to pixels
if predict_feature_dim is None:
predict_feature_dim = patch_size**2 * in_chans
self.decoder_pred = nn.Linear(
decoder_embed_dim, predict_feature_dim, bias=True)
else:
_, norm = build_norm_layer(norm_cfg, embed_dim)
self.add_module('norm', norm)
def build_transformer_pyramid(self,
num_outs=3,
embed_dim=512,
fpn_dim=256,
fpn_depth=2,
mlp_ratio=4.0,
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
rpe=False,
norm_cfg=None):
Hp = None
mlvl_dims = {'4': embed_dim // 4, '8': embed_dim // 2, '16': embed_dim}
if num_outs > 1:
if embed_dim != fpn_dim:
self.align_dim_16tofpn = nn.Linear(embed_dim, fpn_dim)
else:
self.align_dim_16tofpn = None
self.fpn_modules = nn.ModuleList()
self.fpn_modules.append(
BlockWithRPE(
Hp,
fpn_dim,
0,
mlp_ratio,
qkv_bias,
qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=0.,
rpe=rpe,
norm_cfg=norm_cfg))
self.fpn_modules.append(
BlockWithRPE(
Hp,
fpn_dim,
0,
mlp_ratio,
qkv_bias,
qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=0.,
rpe=False,
norm_cfg=norm_cfg,
))
self.align_dim_16to8 = nn.Linear(
mlvl_dims['8'], fpn_dim, bias=False)
self.split_16to8 = PatchSplit(mlvl_dims['16'], fpn_dim, norm_cfg)
self.block_16to8 = nn.Sequential(*[
BlockWithRPE(
Hp,
fpn_dim,
0,
mlp_ratio,
qkv_bias,
qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=0.,
rpe=rpe,
norm_cfg=norm_cfg,
) for _ in range(fpn_depth)
])
if num_outs > 2:
self.align_dim_8to4 = nn.Linear(
mlvl_dims['4'], fpn_dim, bias=False)
self.split_8to4 = PatchSplit(fpn_dim, fpn_dim, norm_cfg)
self.block_8to4 = nn.Sequential(*[
BlockWithRPE(
Hp,
fpn_dim,
0,
mlp_ratio,
qkv_bias,
qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=0.,
rpe=rpe,
norm_cfg=norm_cfg,
) for _ in range(fpn_depth)
])
self.fpn_modules.append(
BlockWithRPE(
Hp,
fpn_dim,
0,
mlp_ratio,
qkv_bias,
qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=0.,
rpe=rpe,
norm_cfg=norm_cfg))
def init_weights(self) -> None:
"""Initialize position embedding and mask token of MAE decoder."""
super().init_weights()
if self.reconstruction_type == 'pixel':
decoder_pos_embed = build_2d_sincos_position_embedding(
int(self.num_patches**.5),
self.decoder_pos_embed.shape[-1],
cls_token=False)
self.decoder_pos_embed.data.copy_(decoder_pos_embed.float())
torch.nn.init.normal_(self.mask_token, std=.02)
else:
self.rescale_init_weight()
def rescale_init_weight(self) -> None:
"""Rescale the initialized weights."""
def rescale(param, layer_id):
param.div_(math.sqrt(2.0 * layer_id))
for layer_id, layer in enumerate(self.fpn_modules):
if isinstance(layer, BlockWithRPE):
if layer.attn is not None:
rescale(layer.attn.proj.weight.data, layer_id + 1)
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
@property
def decoder_norm(self):
"""The normalization layer of decoder."""
return getattr(self, self.decoder_norm_name)
def forward(self,
x: torch.Tensor,
ids_restore: torch.Tensor = None) -> torch.Tensor:
"""The forward function.
The process computes the visible patches' features vectors and the mask
tokens to output feature vectors, which will be used for
reconstruction.
Args:
x (torch.Tensor): hidden features, which is of shape
B x (L * mask_ratio) x C.
ids_restore (torch.Tensor): ids to restore original image.
Returns:
torch.Tensor: The reconstructed feature vectors, which is of
shape B x (num_patches) x C.
"""
features = x[:2]
x = x[-1]
B, L, _ = x.shape
x = x[..., None, None, :]
Hp = Wp = math.sqrt(L)
outs = [x] if self.align_dim_16tofpn is None else [
self.align_dim_16tofpn(x)
]
if self.num_outs >= 2:
x = self.block_16to8(
self.split_16to8(x) + self.align_dim_16to8(features[1]))
outs.append(x)
if self.num_outs >= 3:
x = self.block_8to4(
self.split_8to4(x) + self.align_dim_8to4(features[0]))
outs.append(x)
if self.num_outs > 3:
outs = [
out.reshape(B, Hp, Wp, *out.shape[-3:]).permute(
0, 5, 1, 3, 2, 4).reshape(B, -1, Hp * out.shape[-3],
Wp * out.shape[-2]).contiguous()
for out in outs
]
if self.num_outs >= 4:
outs.insert(0, F.avg_pool2d(outs[0], kernel_size=2, stride=2))
if self.num_outs >= 5:
outs.insert(0, F.avg_pool2d(outs[0], kernel_size=2, stride=2))
for i, out in enumerate(outs):
out = self.fpn_modules[i](out)
outs[i] = out
if self.reconstruction_type == 'pixel':
feats = []
for feat, layer in zip(outs, self.decoder_embed):
x = layer(feat).reshape(B, L, -1)
# append mask tokens to sequence
mask_tokens = self.mask_token.repeat(
x.shape[0], ids_restore.shape[1] + 1 - x.shape[1], 1)
x = torch.cat([x, mask_tokens], dim=1)
x = torch.gather(
x,
dim=1,
index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2]))
feats.append(x)
x = feats.pop(0)
# add pos embed
x = x + self.decoder_pos_embed
for i, feat in enumerate(feats):
x = x + feats[i]
# apply Transformer blocks
for i, blk in enumerate(self.decoder_blocks):
x = blk(x)
x = self.decoder_norm(x)
x = self.decoder_pred(x)
return x
else:
feats = []
for feat, layer in zip(outs, self.decoder_embed):
x = layer(feat).reshape(B, L, -1)
feats.append(x)
x = feats.pop(0)
for i, feat in enumerate(feats):
x = x + feats[i]
x = self.norm(x)
return x
|