Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import Sequence | |
import torch.nn as nn | |
from mmcv.cnn import build_norm_layer | |
from mmcv.cnn.bricks.transformer import FFN, PatchEmbed | |
from mmengine.model import BaseModule, ModuleList | |
from mmpretrain.registry import MODELS | |
from ..utils import to_2tuple | |
from .base_backbone import BaseBackbone | |
class MixerBlock(BaseModule): | |
"""Mlp-Mixer basic block. | |
Basic module of `MLP-Mixer: An all-MLP Architecture for Vision | |
<https://arxiv.org/pdf/2105.01601.pdf>`_ | |
Args: | |
num_tokens (int): The number of patched tokens | |
embed_dims (int): The feature dimension | |
tokens_mlp_dims (int): The hidden dimension for tokens FFNs | |
channels_mlp_dims (int): The hidden dimension for channels FFNs | |
drop_rate (float): Probability of an element to be zeroed | |
after the feed forward layer. Defaults to 0. | |
drop_path_rate (float): Stochastic depth rate. Defaults to 0. | |
num_fcs (int): The number of fully-connected layers for FFNs. | |
Defaults to 2. | |
act_cfg (dict): The activation config for FFNs. | |
Defaults to ``dict(type='GELU')``. | |
norm_cfg (dict): Config dict for normalization layer. | |
Defaults to ``dict(type='LN')``. | |
init_cfg (dict, optional): Initialization config dict. | |
Defaults to None. | |
""" | |
def __init__(self, | |
num_tokens, | |
embed_dims, | |
tokens_mlp_dims, | |
channels_mlp_dims, | |
drop_rate=0., | |
drop_path_rate=0., | |
num_fcs=2, | |
act_cfg=dict(type='GELU'), | |
norm_cfg=dict(type='LN'), | |
init_cfg=None): | |
super(MixerBlock, self).__init__(init_cfg=init_cfg) | |
self.norm1_name, norm1 = build_norm_layer( | |
norm_cfg, embed_dims, postfix=1) | |
self.add_module(self.norm1_name, norm1) | |
self.token_mix = FFN( | |
embed_dims=num_tokens, | |
feedforward_channels=tokens_mlp_dims, | |
num_fcs=num_fcs, | |
ffn_drop=drop_rate, | |
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), | |
act_cfg=act_cfg, | |
add_identity=False) | |
self.norm2_name, norm2 = build_norm_layer( | |
norm_cfg, embed_dims, postfix=2) | |
self.add_module(self.norm2_name, norm2) | |
self.channel_mix = FFN( | |
embed_dims=embed_dims, | |
feedforward_channels=channels_mlp_dims, | |
num_fcs=num_fcs, | |
ffn_drop=drop_rate, | |
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), | |
act_cfg=act_cfg) | |
def norm1(self): | |
return getattr(self, self.norm1_name) | |
def norm2(self): | |
return getattr(self, self.norm2_name) | |
def init_weights(self): | |
super(MixerBlock, self).init_weights() | |
for m in self.token_mix.modules(): | |
if isinstance(m, nn.Linear): | |
nn.init.xavier_uniform_(m.weight) | |
nn.init.normal_(m.bias, std=1e-6) | |
for m in self.channel_mix.modules(): | |
if isinstance(m, nn.Linear): | |
nn.init.xavier_uniform_(m.weight) | |
nn.init.normal_(m.bias, std=1e-6) | |
def forward(self, x): | |
out = self.norm1(x).transpose(1, 2) | |
x = x + self.token_mix(out).transpose(1, 2) | |
x = self.channel_mix(self.norm2(x), identity=x) | |
return x | |
class MlpMixer(BaseBackbone): | |
"""Mlp-Mixer backbone. | |
Pytorch implementation of `MLP-Mixer: An all-MLP Architecture for Vision | |
<https://arxiv.org/pdf/2105.01601.pdf>`_ | |
Args: | |
arch (str | dict): MLP Mixer architecture. If use string, choose from | |
'small', 'base' and 'large'. If use dict, it should have below | |
keys: | |
- **embed_dims** (int): The dimensions of embedding. | |
- **num_layers** (int): The number of MLP blocks. | |
- **tokens_mlp_dims** (int): The hidden dimensions for tokens FFNs. | |
- **channels_mlp_dims** (int): The The hidden dimensions for | |
channels FFNs. | |
Defaults to 'base'. | |
img_size (int | tuple): The input image shape. Defaults to 224. | |
patch_size (int | tuple): The patch size in patch embedding. | |
Defaults to 16. | |
out_indices (Sequence | int): Output from which layer. | |
Defaults to -1, means the last layer. | |
drop_rate (float): Probability of an element to be zeroed. | |
Defaults to 0. | |
drop_path_rate (float): stochastic depth rate. Defaults to 0. | |
norm_cfg (dict): Config dict for normalization layer. | |
Defaults to ``dict(type='LN')``. | |
act_cfg (dict): The activation config for FFNs. Default GELU. | |
patch_cfg (dict): Configs of patch embeding. Defaults to an empty dict. | |
layer_cfgs (Sequence | dict): Configs of each mixer block layer. | |
Defaults to an empty dict. | |
init_cfg (dict, optional): Initialization config dict. | |
Defaults to None. | |
""" | |
arch_zoo = { | |
**dict.fromkeys( | |
['s', 'small'], { | |
'embed_dims': 512, | |
'num_layers': 8, | |
'tokens_mlp_dims': 256, | |
'channels_mlp_dims': 2048, | |
}), | |
**dict.fromkeys( | |
['b', 'base'], { | |
'embed_dims': 768, | |
'num_layers': 12, | |
'tokens_mlp_dims': 384, | |
'channels_mlp_dims': 3072, | |
}), | |
**dict.fromkeys( | |
['l', 'large'], { | |
'embed_dims': 1024, | |
'num_layers': 24, | |
'tokens_mlp_dims': 512, | |
'channels_mlp_dims': 4096, | |
}), | |
} | |
def __init__(self, | |
arch='base', | |
img_size=224, | |
patch_size=16, | |
out_indices=-1, | |
drop_rate=0., | |
drop_path_rate=0., | |
norm_cfg=dict(type='LN'), | |
act_cfg=dict(type='GELU'), | |
patch_cfg=dict(), | |
layer_cfgs=dict(), | |
init_cfg=None): | |
super(MlpMixer, self).__init__(init_cfg) | |
if isinstance(arch, str): | |
arch = arch.lower() | |
assert arch in set(self.arch_zoo), \ | |
f'Arch {arch} is not in default archs {set(self.arch_zoo)}' | |
self.arch_settings = self.arch_zoo[arch] | |
else: | |
essential_keys = { | |
'embed_dims', 'num_layers', 'tokens_mlp_dims', | |
'channels_mlp_dims' | |
} | |
assert isinstance(arch, dict) and set(arch) == essential_keys, \ | |
f'Custom arch needs a dict with keys {essential_keys}' | |
self.arch_settings = arch | |
self.embed_dims = self.arch_settings['embed_dims'] | |
self.num_layers = self.arch_settings['num_layers'] | |
self.tokens_mlp_dims = self.arch_settings['tokens_mlp_dims'] | |
self.channels_mlp_dims = self.arch_settings['channels_mlp_dims'] | |
self.img_size = to_2tuple(img_size) | |
_patch_cfg = dict( | |
input_size=img_size, | |
embed_dims=self.embed_dims, | |
conv_type='Conv2d', | |
kernel_size=patch_size, | |
stride=patch_size, | |
) | |
_patch_cfg.update(patch_cfg) | |
self.patch_embed = PatchEmbed(**_patch_cfg) | |
self.patch_resolution = self.patch_embed.init_out_size | |
num_patches = self.patch_resolution[0] * self.patch_resolution[1] | |
if isinstance(out_indices, int): | |
out_indices = [out_indices] | |
assert isinstance(out_indices, Sequence), \ | |
f'"out_indices" must be a sequence or int, ' \ | |
f'get {type(out_indices)} instead.' | |
for i, index in enumerate(out_indices): | |
if index < 0: | |
out_indices[i] = self.num_layers + index | |
assert out_indices[i] >= 0, f'Invalid out_indices {index}' | |
else: | |
assert index >= self.num_layers, f'Invalid out_indices {index}' | |
self.out_indices = out_indices | |
self.layers = ModuleList() | |
if isinstance(layer_cfgs, dict): | |
layer_cfgs = [layer_cfgs] * self.num_layers | |
for i in range(self.num_layers): | |
_layer_cfg = dict( | |
num_tokens=num_patches, | |
embed_dims=self.embed_dims, | |
tokens_mlp_dims=self.tokens_mlp_dims, | |
channels_mlp_dims=self.channels_mlp_dims, | |
drop_rate=drop_rate, | |
drop_path_rate=drop_path_rate, | |
act_cfg=act_cfg, | |
norm_cfg=norm_cfg, | |
) | |
_layer_cfg.update(layer_cfgs[i]) | |
self.layers.append(MixerBlock(**_layer_cfg)) | |
self.norm1_name, norm1 = build_norm_layer( | |
norm_cfg, self.embed_dims, postfix=1) | |
self.add_module(self.norm1_name, norm1) | |
def norm1(self): | |
return getattr(self, self.norm1_name) | |
def forward(self, x): | |
assert x.shape[2:] == self.img_size, \ | |
"The MLP-Mixer doesn't support dynamic input shape. " \ | |
f'Please input images with shape {self.img_size}' | |
x, _ = self.patch_embed(x) | |
outs = [] | |
for i, layer in enumerate(self.layers): | |
x = layer(x) | |
if i == len(self.layers) - 1: | |
x = self.norm1(x) | |
if i in self.out_indices: | |
out = x.transpose(1, 2) | |
outs.append(out) | |
return tuple(outs) | |