Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import math | |
from typing import Callable, Optional, Sequence | |
import torch | |
import torch.nn.functional as F | |
from mmcv.cnn import ConvModule, build_norm_layer | |
from torch import nn | |
from mmpretrain.registry import MODELS | |
from .base_backbone import BaseBackbone | |
from .mobilenet_v2 import InvertedResidual | |
from .vision_transformer import TransformerEncoderLayer | |
class MobileVitBlock(nn.Module): | |
"""MobileViT block. | |
According to the paper, the MobileViT block has a local representation. | |
a transformer-as-convolution layer which consists of a global | |
representation with unfolding and folding, and a final fusion layer. | |
Args: | |
in_channels (int): Number of input image channels. | |
transformer_dim (int): Number of transformer channels. | |
ffn_dim (int): Number of ffn channels in transformer block. | |
out_channels (int): Number of channels in output. | |
conv_ksize (int): Conv kernel size in local representation | |
and fusion. Defaults to 3. | |
conv_cfg (dict, optional): Config dict for convolution layer. | |
Defaults to None, which means using conv2d. | |
norm_cfg (dict, optional): Config dict for normalization layer. | |
Defaults to dict(type='BN'). | |
act_cfg (dict, optional): Config dict for activation layer. | |
Defaults to dict(type='Swish'). | |
num_transformer_blocks (int): Number of transformer blocks in | |
a MobileViT block. Defaults to 2. | |
patch_size (int): Patch size for unfolding and folding. | |
Defaults to 2. | |
num_heads (int): Number of heads in global representation. | |
Defaults to 4. | |
drop_rate (float): Probability of an element to be zeroed | |
after the feed forward layer. Defaults to 0. | |
attn_drop_rate (float): The drop out rate for attention output weights. | |
Defaults to 0. | |
drop_path_rate (float): Stochastic depth rate. Defaults to 0. | |
no_fusion (bool): Whether to remove the fusion layer. | |
Defaults to False. | |
transformer_norm_cfg (dict, optional): Config dict for normalization | |
layer in transformer. Defaults to dict(type='LN'). | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
transformer_dim: int, | |
ffn_dim: int, | |
out_channels: int, | |
conv_ksize: int = 3, | |
conv_cfg: Optional[dict] = None, | |
norm_cfg: Optional[dict] = dict(type='BN'), | |
act_cfg: Optional[dict] = dict(type='Swish'), | |
num_transformer_blocks: int = 2, | |
patch_size: int = 2, | |
num_heads: int = 4, | |
drop_rate: float = 0., | |
attn_drop_rate: float = 0., | |
drop_path_rate: float = 0., | |
no_fusion: bool = False, | |
transformer_norm_cfg: Callable = dict(type='LN'), | |
): | |
super(MobileVitBlock, self).__init__() | |
self.local_rep = nn.Sequential( | |
ConvModule( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
kernel_size=conv_ksize, | |
padding=int((conv_ksize - 1) / 2), | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg), | |
ConvModule( | |
in_channels=in_channels, | |
out_channels=transformer_dim, | |
kernel_size=1, | |
bias=False, | |
conv_cfg=conv_cfg, | |
norm_cfg=None, | |
act_cfg=None), | |
) | |
global_rep = [ | |
TransformerEncoderLayer( | |
embed_dims=transformer_dim, | |
num_heads=num_heads, | |
feedforward_channels=ffn_dim, | |
drop_rate=drop_rate, | |
attn_drop_rate=attn_drop_rate, | |
drop_path_rate=drop_path_rate, | |
qkv_bias=True, | |
act_cfg=dict(type='Swish'), | |
norm_cfg=transformer_norm_cfg) | |
for _ in range(num_transformer_blocks) | |
] | |
global_rep.append( | |
build_norm_layer(transformer_norm_cfg, transformer_dim)[1]) | |
self.global_rep = nn.Sequential(*global_rep) | |
self.conv_proj = ConvModule( | |
in_channels=transformer_dim, | |
out_channels=out_channels, | |
kernel_size=1, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg) | |
if no_fusion: | |
self.conv_fusion = None | |
else: | |
self.conv_fusion = ConvModule( | |
in_channels=in_channels + out_channels, | |
out_channels=out_channels, | |
kernel_size=conv_ksize, | |
padding=int((conv_ksize - 1) / 2), | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg) | |
self.patch_size = (patch_size, patch_size) | |
self.patch_area = self.patch_size[0] * self.patch_size[1] | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
shortcut = x | |
# Local representation | |
x = self.local_rep(x) | |
# Unfold (feature map -> patches) | |
patch_h, patch_w = self.patch_size | |
B, C, H, W = x.shape | |
new_h, new_w = math.ceil(H / patch_h) * patch_h, math.ceil( | |
W / patch_w) * patch_w | |
num_patch_h, num_patch_w = new_h // patch_h, new_w // patch_w # n_h, n_w # noqa | |
num_patches = num_patch_h * num_patch_w # N | |
interpolate = False | |
if new_h != H or new_w != W: | |
# Note: Padding can be done, but then it needs to be handled in attention function. # noqa | |
x = F.interpolate( | |
x, size=(new_h, new_w), mode='bilinear', align_corners=False) | |
interpolate = True | |
# [B, C, H, W] --> [B * C * n_h, n_w, p_h, p_w] | |
x = x.reshape(B * C * num_patch_h, patch_h, num_patch_w, | |
patch_w).transpose(1, 2) | |
# [B * C * n_h, n_w, p_h, p_w] --> [BP, N, C] where P = p_h * p_w and N = n_h * n_w # noqa | |
x = x.reshape(B, C, num_patches, | |
self.patch_area).transpose(1, 3).reshape( | |
B * self.patch_area, num_patches, -1) | |
# Global representations | |
x = self.global_rep(x) | |
# Fold (patch -> feature map) | |
# [B, P, N, C] --> [B*C*n_h, n_w, p_h, p_w] | |
x = x.contiguous().view(B, self.patch_area, num_patches, -1) | |
x = x.transpose(1, 3).reshape(B * C * num_patch_h, num_patch_w, | |
patch_h, patch_w) | |
# [B*C*n_h, n_w, p_h, p_w] --> [B*C*n_h, p_h, n_w, p_w] --> [B, C, H, W] # noqa | |
x = x.transpose(1, 2).reshape(B, C, num_patch_h * patch_h, | |
num_patch_w * patch_w) | |
if interpolate: | |
x = F.interpolate( | |
x, size=(H, W), mode='bilinear', align_corners=False) | |
x = self.conv_proj(x) | |
if self.conv_fusion is not None: | |
x = self.conv_fusion(torch.cat((shortcut, x), dim=1)) | |
return x | |
class MobileViT(BaseBackbone): | |
"""MobileViT backbone. | |
A PyTorch implementation of : `MobileViT: Light-weight, General-purpose, | |
and Mobile-friendly Vision Transformer <https://arxiv.org/pdf/2110.02178.pdf>`_ | |
Modified from the `official repo | |
<https://github.com/apple/ml-cvnets/blob/main/cvnets/models/classification/mobilevit.py>`_ | |
and `timm | |
<https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/mobilevit.py>`_. | |
Args: | |
arch (str | List[list]): Architecture of MobileViT. | |
- If a string, choose from "small", "x_small" and "xx_small". | |
- If a list, every item should be also a list, and the first item | |
of the sub-list can be chosen from "moblienetv2" and "mobilevit", | |
which indicates the type of this layer sequence. If "mobilenetv2", | |
the other items are the arguments of :attr:`~MobileViT.make_mobilenetv2_layer` | |
(except ``in_channels``) and if "mobilevit", the other items are | |
the arguments of :attr:`~MobileViT.make_mobilevit_layer` | |
(except ``in_channels``). | |
Defaults to "small". | |
in_channels (int): Number of input image channels. Defaults to 3. | |
stem_channels (int): Channels of stem layer. Defaults to 16. | |
last_exp_factor (int): Channels expand factor of last layer. | |
Defaults to 4. | |
out_indices (Sequence[int]): Output from which stages. | |
Defaults to (4, ). | |
frozen_stages (int): Stages to be frozen (all param fixed). | |
Defaults to -1, which means not freezing any parameters. | |
conv_cfg (dict, optional): Config dict for convolution layer. | |
Defaults to None, which means using conv2d. | |
norm_cfg (dict, optional): Config dict for normalization layer. | |
Defaults to dict(type='BN'). | |
act_cfg (dict, optional): Config dict for activation layer. | |
Defaults to dict(type='Swish'). | |
init_cfg (dict, optional): Initialization config dict. | |
""" # noqa | |
# Parameters to build layers. The first param is the type of layer. | |
# For `mobilenetv2` layer, the rest params from left to right are: | |
# out channels, stride, num of blocks, expand_ratio. | |
# For `mobilevit` layer, the rest params from left to right are: | |
# out channels, stride, transformer_channels, ffn channels, | |
# num of transformer blocks, expand_ratio. | |
arch_settings = { | |
'small': [ | |
['mobilenetv2', 32, 1, 1, 4], | |
['mobilenetv2', 64, 2, 3, 4], | |
['mobilevit', 96, 2, 144, 288, 2, 4], | |
['mobilevit', 128, 2, 192, 384, 4, 4], | |
['mobilevit', 160, 2, 240, 480, 3, 4], | |
], | |
'x_small': [ | |
['mobilenetv2', 32, 1, 1, 4], | |
['mobilenetv2', 48, 2, 3, 4], | |
['mobilevit', 64, 2, 96, 192, 2, 4], | |
['mobilevit', 80, 2, 120, 240, 4, 4], | |
['mobilevit', 96, 2, 144, 288, 3, 4], | |
], | |
'xx_small': [ | |
['mobilenetv2', 16, 1, 1, 2], | |
['mobilenetv2', 24, 2, 3, 2], | |
['mobilevit', 48, 2, 64, 128, 2, 2], | |
['mobilevit', 64, 2, 80, 160, 4, 2], | |
['mobilevit', 80, 2, 96, 192, 3, 2], | |
] | |
} | |
def __init__(self, | |
arch='small', | |
in_channels=3, | |
stem_channels=16, | |
last_exp_factor=4, | |
out_indices=(4, ), | |
frozen_stages=-1, | |
conv_cfg=None, | |
norm_cfg=dict(type='BN'), | |
act_cfg=dict(type='Swish'), | |
init_cfg=[ | |
dict(type='Kaiming', layer=['Conv2d']), | |
dict( | |
type='Constant', | |
val=1, | |
layer=['_BatchNorm', 'GroupNorm']) | |
]): | |
super(MobileViT, self).__init__(init_cfg) | |
if isinstance(arch, str): | |
arch = arch.lower() | |
assert arch in self.arch_settings, \ | |
f'Unavailable arch, please choose from ' \ | |
f'({set(self.arch_settings)}) or pass a list.' | |
arch = self.arch_settings[arch] | |
self.arch = arch | |
self.num_stages = len(arch) | |
# check out indices and frozen stages | |
if isinstance(out_indices, int): | |
out_indices = [out_indices] | |
assert isinstance(out_indices, Sequence), \ | |
f'"out_indices" must by a sequence or int, ' \ | |
f'get {type(out_indices)} instead.' | |
for i, index in enumerate(out_indices): | |
if index < 0: | |
out_indices[i] = self.num_stages + index | |
assert out_indices[i] >= 0, f'Invalid out_indices {index}' | |
self.out_indices = out_indices | |
if frozen_stages not in range(-1, self.num_stages): | |
raise ValueError('frozen_stages must be in range(-1, ' | |
f'{self.num_stages}). ' | |
f'But received {frozen_stages}') | |
self.frozen_stages = frozen_stages | |
_make_layer_func = { | |
'mobilenetv2': self.make_mobilenetv2_layer, | |
'mobilevit': self.make_mobilevit_layer, | |
} | |
self.stem = ConvModule( | |
in_channels=in_channels, | |
out_channels=stem_channels, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg) | |
in_channels = stem_channels | |
layers = [] | |
for i, layer_settings in enumerate(arch): | |
layer_type, settings = layer_settings[0], layer_settings[1:] | |
layer, out_channels = _make_layer_func[layer_type](in_channels, | |
*settings) | |
layers.append(layer) | |
in_channels = out_channels | |
self.layers = nn.Sequential(*layers) | |
self.conv_1x1_exp = ConvModule( | |
in_channels=in_channels, | |
out_channels=last_exp_factor * in_channels, | |
kernel_size=1, | |
stride=1, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg) | |
def make_mobilevit_layer(in_channels, | |
out_channels, | |
stride, | |
transformer_dim, | |
ffn_dim, | |
num_transformer_blocks, | |
expand_ratio=4): | |
"""Build mobilevit layer, which consists of one InvertedResidual and | |
one MobileVitBlock. | |
Args: | |
in_channels (int): The input channels. | |
out_channels (int): The output channels. | |
stride (int): The stride of the first 3x3 convolution in the | |
``InvertedResidual`` layers. | |
transformer_dim (int): The channels of the transformer layers. | |
ffn_dim (int): The mid-channels of the feedforward network in | |
transformer layers. | |
num_transformer_blocks (int): The number of transformer blocks. | |
expand_ratio (int): adjusts number of channels of the hidden layer | |
in ``InvertedResidual`` by this amount. Defaults to 4. | |
""" | |
layer = [] | |
layer.append( | |
InvertedResidual( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
stride=stride, | |
expand_ratio=expand_ratio, | |
act_cfg=dict(type='Swish'), | |
)) | |
layer.append( | |
MobileVitBlock( | |
in_channels=out_channels, | |
transformer_dim=transformer_dim, | |
ffn_dim=ffn_dim, | |
out_channels=out_channels, | |
num_transformer_blocks=num_transformer_blocks, | |
)) | |
return nn.Sequential(*layer), out_channels | |
def make_mobilenetv2_layer(in_channels, | |
out_channels, | |
stride, | |
num_blocks, | |
expand_ratio=4): | |
"""Build mobilenetv2 layer, which consists of several InvertedResidual | |
layers. | |
Args: | |
in_channels (int): The input channels. | |
out_channels (int): The output channels. | |
stride (int): The stride of the first 3x3 convolution in the | |
``InvertedResidual`` layers. | |
num_blocks (int): The number of ``InvertedResidual`` blocks. | |
expand_ratio (int): adjusts number of channels of the hidden layer | |
in ``InvertedResidual`` by this amount. Defaults to 4. | |
""" | |
layer = [] | |
for i in range(num_blocks): | |
stride = stride if i == 0 else 1 | |
layer.append( | |
InvertedResidual( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
stride=stride, | |
expand_ratio=expand_ratio, | |
act_cfg=dict(type='Swish'), | |
)) | |
in_channels = out_channels | |
return nn.Sequential(*layer), out_channels | |
def _freeze_stages(self): | |
for i in range(0, self.frozen_stages): | |
layer = self.layers[i] | |
layer.eval() | |
for param in layer.parameters(): | |
param.requires_grad = False | |
def train(self, mode=True): | |
super(MobileViT, self).train(mode) | |
self._freeze_stages() | |
def forward(self, x): | |
x = self.stem(x) | |
outs = [] | |
for i, layer in enumerate(self.layers): | |
x = layer(x) | |
if i == len(self.layers) - 1: | |
x = self.conv_1x1_exp(x) | |
if i in self.out_indices: | |
outs.append(x) | |
return tuple(outs) | |