Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.utils.checkpoint as cp | |
from mmcv.cnn import (ConvModule, build_activation_layer, build_conv_layer, | |
build_norm_layer) | |
from mmcv.cnn.bricks import DropPath | |
from mmengine.model import BaseModule | |
from mmengine.model.weight_init import constant_init | |
from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm | |
from mmpretrain.registry import MODELS | |
from .base_backbone import BaseBackbone | |
eps = 1.0e-5 | |
class BasicBlock(BaseModule): | |
"""BasicBlock for ResNet. | |
Args: | |
in_channels (int): Input channels of this block. | |
out_channels (int): Output channels of this block. | |
expansion (int): The ratio of ``out_channels/mid_channels`` where | |
``mid_channels`` is the output channels of conv1. This is a | |
reserved argument in BasicBlock and should always be 1. Default: 1. | |
stride (int): stride of the block. Default: 1 | |
dilation (int): dilation of convolution. Default: 1 | |
downsample (nn.Module, optional): downsample operation on identity | |
branch. Default: None. | |
style (str): `pytorch` or `caffe`. It is unused and reserved for | |
unified API with Bottleneck. | |
with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
memory while slowing down the training speed. | |
conv_cfg (dict, optional): dictionary to construct and config conv | |
layer. Default: None | |
norm_cfg (dict): dictionary to construct and config norm layer. | |
Default: dict(type='BN') | |
""" | |
def __init__(self, | |
in_channels, | |
out_channels, | |
expansion=1, | |
stride=1, | |
dilation=1, | |
downsample=None, | |
style='pytorch', | |
with_cp=False, | |
conv_cfg=None, | |
norm_cfg=dict(type='BN'), | |
drop_path_rate=0.0, | |
act_cfg=dict(type='ReLU', inplace=True), | |
init_cfg=None): | |
super(BasicBlock, self).__init__(init_cfg=init_cfg) | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.expansion = expansion | |
assert self.expansion == 1 | |
assert out_channels % expansion == 0 | |
self.mid_channels = out_channels // expansion | |
self.stride = stride | |
self.dilation = dilation | |
self.style = style | |
self.with_cp = with_cp | |
self.conv_cfg = conv_cfg | |
self.norm_cfg = norm_cfg | |
self.norm1_name, norm1 = build_norm_layer( | |
norm_cfg, self.mid_channels, postfix=1) | |
self.norm2_name, norm2 = build_norm_layer( | |
norm_cfg, out_channels, postfix=2) | |
self.conv1 = build_conv_layer( | |
conv_cfg, | |
in_channels, | |
self.mid_channels, | |
3, | |
stride=stride, | |
padding=dilation, | |
dilation=dilation, | |
bias=False) | |
self.add_module(self.norm1_name, norm1) | |
self.conv2 = build_conv_layer( | |
conv_cfg, | |
self.mid_channels, | |
out_channels, | |
3, | |
padding=1, | |
bias=False) | |
self.add_module(self.norm2_name, norm2) | |
self.relu = build_activation_layer(act_cfg) | |
self.downsample = downsample | |
self.drop_path = DropPath(drop_prob=drop_path_rate | |
) if drop_path_rate > eps else nn.Identity() | |
def norm1(self): | |
return getattr(self, self.norm1_name) | |
def norm2(self): | |
return getattr(self, self.norm2_name) | |
def forward(self, x): | |
def _inner_forward(x): | |
identity = x | |
out = self.conv1(x) | |
out = self.norm1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.norm2(out) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out = self.drop_path(out) | |
out += identity | |
return out | |
if self.with_cp and x.requires_grad: | |
out = cp.checkpoint(_inner_forward, x) | |
else: | |
out = _inner_forward(x) | |
out = self.relu(out) | |
return out | |
class Bottleneck(BaseModule): | |
"""Bottleneck block for ResNet. | |
Args: | |
in_channels (int): Input channels of this block. | |
out_channels (int): Output channels of this block. | |
expansion (int): The ratio of ``out_channels/mid_channels`` where | |
``mid_channels`` is the input/output channels of conv2. Default: 4. | |
stride (int): stride of the block. Default: 1 | |
dilation (int): dilation of convolution. Default: 1 | |
downsample (nn.Module, optional): downsample operation on identity | |
branch. Default: None. | |
style (str): ``"pytorch"`` or ``"caffe"``. If set to "pytorch", the | |
stride-two layer is the 3x3 conv layer, otherwise the stride-two | |
layer is the first 1x1 conv layer. Default: "pytorch". | |
with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
memory while slowing down the training speed. | |
conv_cfg (dict, optional): dictionary to construct and config conv | |
layer. Default: None | |
norm_cfg (dict): dictionary to construct and config norm layer. | |
Default: dict(type='BN') | |
""" | |
def __init__(self, | |
in_channels, | |
out_channels, | |
expansion=4, | |
stride=1, | |
dilation=1, | |
downsample=None, | |
style='pytorch', | |
with_cp=False, | |
conv_cfg=None, | |
norm_cfg=dict(type='BN'), | |
act_cfg=dict(type='ReLU', inplace=True), | |
drop_path_rate=0.0, | |
init_cfg=None): | |
super(Bottleneck, self).__init__(init_cfg=init_cfg) | |
assert style in ['pytorch', 'caffe'] | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.expansion = expansion | |
assert out_channels % expansion == 0 | |
self.mid_channels = out_channels // expansion | |
self.stride = stride | |
self.dilation = dilation | |
self.style = style | |
self.with_cp = with_cp | |
self.conv_cfg = conv_cfg | |
self.norm_cfg = norm_cfg | |
if self.style == 'pytorch': | |
self.conv1_stride = 1 | |
self.conv2_stride = stride | |
else: | |
self.conv1_stride = stride | |
self.conv2_stride = 1 | |
self.norm1_name, norm1 = build_norm_layer( | |
norm_cfg, self.mid_channels, postfix=1) | |
self.norm2_name, norm2 = build_norm_layer( | |
norm_cfg, self.mid_channels, postfix=2) | |
self.norm3_name, norm3 = build_norm_layer( | |
norm_cfg, out_channels, postfix=3) | |
self.conv1 = build_conv_layer( | |
conv_cfg, | |
in_channels, | |
self.mid_channels, | |
kernel_size=1, | |
stride=self.conv1_stride, | |
bias=False) | |
self.add_module(self.norm1_name, norm1) | |
self.conv2 = build_conv_layer( | |
conv_cfg, | |
self.mid_channels, | |
self.mid_channels, | |
kernel_size=3, | |
stride=self.conv2_stride, | |
padding=dilation, | |
dilation=dilation, | |
bias=False) | |
self.add_module(self.norm2_name, norm2) | |
self.conv3 = build_conv_layer( | |
conv_cfg, | |
self.mid_channels, | |
out_channels, | |
kernel_size=1, | |
bias=False) | |
self.add_module(self.norm3_name, norm3) | |
self.relu = build_activation_layer(act_cfg) | |
self.downsample = downsample | |
self.drop_path = DropPath(drop_prob=drop_path_rate | |
) if drop_path_rate > eps else nn.Identity() | |
def norm1(self): | |
return getattr(self, self.norm1_name) | |
def norm2(self): | |
return getattr(self, self.norm2_name) | |
def norm3(self): | |
return getattr(self, self.norm3_name) | |
def forward(self, x): | |
def _inner_forward(x): | |
identity = x | |
out = self.conv1(x) | |
out = self.norm1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.norm2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.norm3(out) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out = self.drop_path(out) | |
out += identity | |
return out | |
if self.with_cp and x.requires_grad: | |
out = cp.checkpoint(_inner_forward, x) | |
else: | |
out = _inner_forward(x) | |
out = self.relu(out) | |
return out | |
def get_expansion(block, expansion=None): | |
"""Get the expansion of a residual block. | |
The block expansion will be obtained by the following order: | |
1. If ``expansion`` is given, just return it. | |
2. If ``block`` has the attribute ``expansion``, then return | |
``block.expansion``. | |
3. Return the default value according the the block type: | |
1 for ``BasicBlock`` and 4 for ``Bottleneck``. | |
Args: | |
block (class): The block class. | |
expansion (int | None): The given expansion ratio. | |
Returns: | |
int: The expansion of the block. | |
""" | |
if isinstance(expansion, int): | |
assert expansion > 0 | |
elif expansion is None: | |
if hasattr(block, 'expansion'): | |
expansion = block.expansion | |
elif issubclass(block, BasicBlock): | |
expansion = 1 | |
elif issubclass(block, Bottleneck): | |
expansion = 4 | |
else: | |
raise TypeError(f'expansion is not specified for {block.__name__}') | |
else: | |
raise TypeError('expansion must be an integer or None') | |
return expansion | |
class ResLayer(nn.Sequential): | |
"""ResLayer to build ResNet style backbone. | |
Args: | |
block (nn.Module): Residual block used to build ResLayer. | |
num_blocks (int): Number of blocks. | |
in_channels (int): Input channels of this block. | |
out_channels (int): Output channels of this block. | |
expansion (int, optional): The expansion for BasicBlock/Bottleneck. | |
If not specified, it will firstly be obtained via | |
``block.expansion``. If the block has no attribute "expansion", | |
the following default values will be used: 1 for BasicBlock and | |
4 for Bottleneck. Default: None. | |
stride (int): stride of the first block. Default: 1. | |
avg_down (bool): Use AvgPool instead of stride conv when | |
downsampling in the bottleneck. Default: False | |
conv_cfg (dict, optional): dictionary to construct and config conv | |
layer. Default: None | |
norm_cfg (dict): dictionary to construct and config norm layer. | |
Default: dict(type='BN') | |
drop_path_rate (float or list): stochastic depth rate. | |
Default: 0. | |
""" | |
def __init__(self, | |
block, | |
num_blocks, | |
in_channels, | |
out_channels, | |
expansion=None, | |
stride=1, | |
avg_down=False, | |
conv_cfg=None, | |
norm_cfg=dict(type='BN'), | |
drop_path_rate=0.0, | |
**kwargs): | |
self.block = block | |
self.expansion = get_expansion(block, expansion) | |
if isinstance(drop_path_rate, float): | |
drop_path_rate = [drop_path_rate] * num_blocks | |
assert len(drop_path_rate | |
) == num_blocks, 'Please check the length of drop_path_rate' | |
downsample = None | |
if stride != 1 or in_channels != out_channels: | |
downsample = [] | |
conv_stride = stride | |
if avg_down and stride != 1: | |
conv_stride = 1 | |
downsample.append( | |
nn.AvgPool2d( | |
kernel_size=stride, | |
stride=stride, | |
ceil_mode=True, | |
count_include_pad=False)) | |
downsample.extend([ | |
build_conv_layer( | |
conv_cfg, | |
in_channels, | |
out_channels, | |
kernel_size=1, | |
stride=conv_stride, | |
bias=False), | |
build_norm_layer(norm_cfg, out_channels)[1] | |
]) | |
downsample = nn.Sequential(*downsample) | |
layers = [] | |
layers.append( | |
block( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
expansion=self.expansion, | |
stride=stride, | |
downsample=downsample, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
drop_path_rate=drop_path_rate[0], | |
**kwargs)) | |
in_channels = out_channels | |
for i in range(1, num_blocks): | |
layers.append( | |
block( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
expansion=self.expansion, | |
stride=1, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
drop_path_rate=drop_path_rate[i], | |
**kwargs)) | |
super(ResLayer, self).__init__(*layers) | |
class ResNet(BaseBackbone): | |
"""ResNet backbone. | |
Please refer to the `paper <https://arxiv.org/abs/1512.03385>`__ for | |
details. | |
Args: | |
depth (int): Network depth, from {18, 34, 50, 101, 152}. | |
in_channels (int): Number of input image channels. Default: 3. | |
stem_channels (int): Output channels of the stem layer. Default: 64. | |
base_channels (int): Middle channels of the first stage. Default: 64. | |
num_stages (int): Stages of the network. Default: 4. | |
strides (Sequence[int]): Strides of the first block of each stage. | |
Default: ``(1, 2, 2, 2)``. | |
dilations (Sequence[int]): Dilation of each stage. | |
Default: ``(1, 1, 1, 1)``. | |
out_indices (Sequence[int]): Output from which stages. | |
Default: ``(3, )``. | |
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two | |
layer is the 3x3 conv layer, otherwise the stride-two layer is | |
the first 1x1 conv layer. | |
deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv. | |
Default: False. | |
avg_down (bool): Use AvgPool instead of stride conv when | |
downsampling in the bottleneck. Default: False. | |
frozen_stages (int): Stages to be frozen (stop grad and set eval mode). | |
-1 means not freezing any parameters. Default: -1. | |
conv_cfg (dict | None): The config dict for conv layers. Default: None. | |
norm_cfg (dict): The config dict for norm layers. | |
norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
freeze running stats (mean and var). Note: Effect on Batch Norm | |
and its variants only. Default: False. | |
with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
memory while slowing down the training speed. Default: False. | |
zero_init_residual (bool): Whether to use zero init for last norm layer | |
in resblocks to let them behave as identity. Default: True. | |
Example: | |
>>> from mmpretrain.models import ResNet | |
>>> import torch | |
>>> self = ResNet(depth=18) | |
>>> self.eval() | |
>>> inputs = torch.rand(1, 3, 32, 32) | |
>>> level_outputs = self.forward(inputs) | |
>>> for level_out in level_outputs: | |
... print(tuple(level_out.shape)) | |
(1, 64, 8, 8) | |
(1, 128, 4, 4) | |
(1, 256, 2, 2) | |
(1, 512, 1, 1) | |
""" | |
arch_settings = { | |
18: (BasicBlock, (2, 2, 2, 2)), | |
34: (BasicBlock, (3, 4, 6, 3)), | |
50: (Bottleneck, (3, 4, 6, 3)), | |
101: (Bottleneck, (3, 4, 23, 3)), | |
152: (Bottleneck, (3, 8, 36, 3)) | |
} | |
def __init__(self, | |
depth, | |
in_channels=3, | |
stem_channels=64, | |
base_channels=64, | |
expansion=None, | |
num_stages=4, | |
strides=(1, 2, 2, 2), | |
dilations=(1, 1, 1, 1), | |
out_indices=(3, ), | |
style='pytorch', | |
deep_stem=False, | |
avg_down=False, | |
frozen_stages=-1, | |
conv_cfg=None, | |
norm_cfg=dict(type='BN', requires_grad=True), | |
norm_eval=False, | |
with_cp=False, | |
zero_init_residual=True, | |
init_cfg=[ | |
dict(type='Kaiming', layer=['Conv2d']), | |
dict( | |
type='Constant', | |
val=1, | |
layer=['_BatchNorm', 'GroupNorm']) | |
], | |
drop_path_rate=0.0): | |
super(ResNet, self).__init__(init_cfg) | |
if depth not in self.arch_settings: | |
raise KeyError(f'invalid depth {depth} for resnet') | |
self.depth = depth | |
self.stem_channels = stem_channels | |
self.base_channels = base_channels | |
self.num_stages = num_stages | |
assert num_stages >= 1 and num_stages <= 4 | |
self.strides = strides | |
self.dilations = dilations | |
assert len(strides) == len(dilations) == num_stages | |
self.out_indices = out_indices | |
assert max(out_indices) < num_stages | |
self.style = style | |
self.deep_stem = deep_stem | |
self.avg_down = avg_down | |
self.frozen_stages = frozen_stages | |
self.conv_cfg = conv_cfg | |
self.norm_cfg = norm_cfg | |
self.with_cp = with_cp | |
self.norm_eval = norm_eval | |
self.zero_init_residual = zero_init_residual | |
self.block, stage_blocks = self.arch_settings[depth] | |
self.stage_blocks = stage_blocks[:num_stages] | |
self.expansion = get_expansion(self.block, expansion) | |
self._make_stem_layer(in_channels, stem_channels) | |
self.res_layers = [] | |
_in_channels = stem_channels | |
_out_channels = base_channels * self.expansion | |
# stochastic depth decay rule | |
total_depth = sum(stage_blocks) | |
dpr = [ | |
x.item() for x in torch.linspace(0, drop_path_rate, total_depth) | |
] | |
for i, num_blocks in enumerate(self.stage_blocks): | |
stride = strides[i] | |
dilation = dilations[i] | |
res_layer = self.make_res_layer( | |
block=self.block, | |
num_blocks=num_blocks, | |
in_channels=_in_channels, | |
out_channels=_out_channels, | |
expansion=self.expansion, | |
stride=stride, | |
dilation=dilation, | |
style=self.style, | |
avg_down=self.avg_down, | |
with_cp=with_cp, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
drop_path_rate=dpr[:num_blocks]) | |
_in_channels = _out_channels | |
_out_channels *= 2 | |
dpr = dpr[num_blocks:] | |
layer_name = f'layer{i + 1}' | |
self.add_module(layer_name, res_layer) | |
self.res_layers.append(layer_name) | |
self._freeze_stages() | |
self.feat_dim = res_layer[-1].out_channels | |
def make_res_layer(self, **kwargs): | |
return ResLayer(**kwargs) | |
def norm1(self): | |
return getattr(self, self.norm1_name) | |
def _make_stem_layer(self, in_channels, stem_channels): | |
if self.deep_stem: | |
self.stem = nn.Sequential( | |
ConvModule( | |
in_channels, | |
stem_channels // 2, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
inplace=True), | |
ConvModule( | |
stem_channels // 2, | |
stem_channels // 2, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
inplace=True), | |
ConvModule( | |
stem_channels // 2, | |
stem_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
inplace=True)) | |
else: | |
self.conv1 = build_conv_layer( | |
self.conv_cfg, | |
in_channels, | |
stem_channels, | |
kernel_size=7, | |
stride=2, | |
padding=3, | |
bias=False) | |
self.norm1_name, norm1 = build_norm_layer( | |
self.norm_cfg, stem_channels, postfix=1) | |
self.add_module(self.norm1_name, norm1) | |
self.relu = nn.ReLU(inplace=True) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
def _freeze_stages(self): | |
if self.frozen_stages >= 0: | |
if self.deep_stem: | |
self.stem.eval() | |
for param in self.stem.parameters(): | |
param.requires_grad = False | |
else: | |
self.norm1.eval() | |
for m in [self.conv1, self.norm1]: | |
for param in m.parameters(): | |
param.requires_grad = False | |
for i in range(1, self.frozen_stages + 1): | |
m = getattr(self, f'layer{i}') | |
m.eval() | |
for param in m.parameters(): | |
param.requires_grad = False | |
def init_weights(self): | |
super(ResNet, self).init_weights() | |
if (isinstance(self.init_cfg, dict) | |
and self.init_cfg['type'] == 'Pretrained'): | |
# Suppress zero_init_residual if use pretrained model. | |
return | |
if self.zero_init_residual: | |
for m in self.modules(): | |
if isinstance(m, Bottleneck): | |
constant_init(m.norm3, 0) | |
elif isinstance(m, BasicBlock): | |
constant_init(m.norm2, 0) | |
def forward(self, x): | |
if self.deep_stem: | |
x = self.stem(x) | |
else: | |
x = self.conv1(x) | |
x = self.norm1(x) | |
x = self.relu(x) | |
x = self.maxpool(x) | |
outs = [] | |
for i, layer_name in enumerate(self.res_layers): | |
res_layer = getattr(self, layer_name) | |
x = res_layer(x) | |
if i in self.out_indices: | |
outs.append(x) | |
return tuple(outs) | |
def train(self, mode=True): | |
super(ResNet, self).train(mode) | |
self._freeze_stages() | |
if mode and self.norm_eval: | |
for m in self.modules(): | |
# trick: eval have effect on BatchNorm only | |
if isinstance(m, _BatchNorm): | |
m.eval() | |
def get_layer_depth(self, param_name: str, prefix: str = ''): | |
"""Get the layer id to set the different learning rates for ResNet. | |
ResNet stages: | |
50 : [3, 4, 6, 3] | |
101 : [3, 4, 23, 3] | |
152 : [3, 8, 36, 3] | |
200 : [3, 24, 36, 3] | |
eca269d: [3, 30, 48, 8] | |
Args: | |
param_name (str): The name of the parameter. | |
prefix (str): The prefix for the parameter. | |
Defaults to an empty string. | |
Returns: | |
Tuple[int, int]: The layer-wise depth and the num of layers. | |
""" | |
depths = self.stage_blocks | |
if depths[1] == 4 and depths[2] == 6: | |
blk2, blk3 = 2, 3 | |
elif depths[1] == 4 and depths[2] == 23: | |
blk2, blk3 = 2, 3 | |
elif depths[1] == 8 and depths[2] == 36: | |
blk2, blk3 = 4, 4 | |
elif depths[1] == 24 and depths[2] == 36: | |
blk2, blk3 = 4, 4 | |
elif depths[1] == 30 and depths[2] == 48: | |
blk2, blk3 = 5, 6 | |
else: | |
raise NotImplementedError | |
N2, N3 = math.ceil(depths[1] / blk2 - | |
1e-5), math.ceil(depths[2] / blk3 - 1e-5) | |
N = 2 + N2 + N3 # r50: 2 + 2 + 2 = 6 | |
max_layer_id = N + 1 # r50: 2 + 2 + 2 + 1(like head) = 7 | |
if not param_name.startswith(prefix): | |
# For subsequent module like head | |
return max_layer_id, max_layer_id + 1 | |
if param_name.startswith('backbone.layer'): | |
stage_id = int(param_name.split('.')[1][5:]) | |
block_id = int(param_name.split('.')[2]) | |
if stage_id == 1: | |
layer_id = 1 | |
elif stage_id == 2: | |
layer_id = 2 + block_id // blk2 # r50: 2, 3 | |
elif stage_id == 3: | |
layer_id = 2 + N2 + block_id // blk3 # r50: 4, 5 | |
else: # stage_id == 4 | |
layer_id = N # r50: 6 | |
return layer_id, max_layer_id + 1 | |
else: | |
return 0, max_layer_id + 1 | |
class ResNetV1c(ResNet): | |
"""ResNetV1c backbone. | |
This variant is described in `Bag of Tricks. | |
<https://arxiv.org/pdf/1812.01187.pdf>`_. | |
Compared with default ResNet(ResNetV1b), ResNetV1c replaces the 7x7 conv | |
in the input stem with three 3x3 convs. | |
""" | |
def __init__(self, **kwargs): | |
super(ResNetV1c, self).__init__( | |
deep_stem=True, avg_down=False, **kwargs) | |
class ResNetV1d(ResNet): | |
"""ResNetV1d backbone. | |
This variant is described in `Bag of Tricks. | |
<https://arxiv.org/pdf/1812.01187.pdf>`_. | |
Compared with default ResNet(ResNetV1b), ResNetV1d replaces the 7x7 conv in | |
the input stem with three 3x3 convs. And in the downsampling block, a 2x2 | |
avg_pool with stride 2 is added before conv, whose stride is changed to 1. | |
""" | |
def __init__(self, **kwargs): | |
super(ResNetV1d, self).__init__( | |
deep_stem=True, avg_down=True, **kwargs) | |