Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import sys | |
import numpy as np | |
import torch | |
from mmcv.cnn.bricks.drop import build_dropout | |
from mmcv.cnn.bricks.transformer import FFN, PatchEmbed | |
from mmengine.model import BaseModule, ModuleList | |
from mmengine.model.weight_init import trunc_normal_ | |
from torch import nn | |
from torch.autograd import Function as Function | |
from mmpretrain.models.backbones.base_backbone import BaseBackbone | |
from mmpretrain.registry import MODELS | |
from ..utils import (MultiheadAttention, build_norm_layer, resize_pos_embed, | |
to_2tuple) | |
class RevBackProp(Function): | |
"""Custom Backpropagation function to allow (A) flushing memory in forward | |
and (B) activation recomputation reversibly in backward for gradient | |
calculation. | |
Inspired by | |
https://github.com/RobinBruegger/RevTorch/blob/master/revtorch/revtorch.py | |
""" | |
def forward( | |
ctx, | |
x, | |
layers, | |
buffer_layers, # List of layer ids for int activation to buffer | |
): | |
"""Reversible Forward pass. | |
Any intermediate activations from `buffer_layers` are cached in ctx for | |
forward pass. This is not necessary for standard usecases. Each | |
reversible layer implements its own forward pass logic. | |
""" | |
buffer_layers.sort() | |
x1, x2 = torch.chunk(x, 2, dim=-1) | |
intermediate = [] | |
for layer in layers: | |
x1, x2 = layer(x1, x2) | |
if layer.layer_id in buffer_layers: | |
intermediate.extend([x1.detach(), x2.detach()]) | |
if len(buffer_layers) == 0: | |
all_tensors = [x1.detach(), x2.detach()] | |
else: | |
intermediate = [torch.LongTensor(buffer_layers), *intermediate] | |
all_tensors = [x1.detach(), x2.detach(), *intermediate] | |
ctx.save_for_backward(*all_tensors) | |
ctx.layers = layers | |
return torch.cat([x1, x2], dim=-1) | |
def backward(ctx, dx): | |
"""Reversible Backward pass. | |
Any intermediate activations from `buffer_layers` are recovered from | |
ctx. Each layer implements its own loic for backward pass (both | |
activation recomputation and grad calculation). | |
""" | |
d_x1, d_x2 = torch.chunk(dx, 2, dim=-1) | |
# retrieve params from ctx for backward | |
x1, x2, *int_tensors = ctx.saved_tensors | |
# no buffering | |
if len(int_tensors) != 0: | |
buffer_layers = int_tensors[0].tolist() | |
else: | |
buffer_layers = [] | |
layers = ctx.layers | |
for _, layer in enumerate(layers[::-1]): | |
if layer.layer_id in buffer_layers: | |
x1, x2, d_x1, d_x2 = layer.backward_pass( | |
y1=int_tensors[buffer_layers.index(layer.layer_id) * 2 + | |
1], | |
y2=int_tensors[buffer_layers.index(layer.layer_id) * 2 + | |
2], | |
d_y1=d_x1, | |
d_y2=d_x2, | |
) | |
else: | |
x1, x2, d_x1, d_x2 = layer.backward_pass( | |
y1=x1, | |
y2=x2, | |
d_y1=d_x1, | |
d_y2=d_x2, | |
) | |
dx = torch.cat([d_x1, d_x2], dim=-1) | |
del int_tensors | |
del d_x1, d_x2, x1, x2 | |
return dx, None, None | |
class RevTransformerEncoderLayer(BaseModule): | |
"""Reversible Transformer Encoder Layer. | |
This module is a building block of Reversible Transformer Encoder, | |
which support backpropagation without storing activations. | |
The residual connection is not applied to the FFN layer. | |
Args: | |
embed_dims (int): The feature dimension. | |
num_heads (int): Parallel attention heads. | |
feedforward_channels (int): The hidden dimension for FFNs. | |
drop_rate (float): Probability of an element to be zeroed. | |
Default: 0.0 | |
attn_drop_rate (float): The drop out rate for attention layer. | |
Default: 0.0 | |
drop_path_rate (float): stochastic depth rate. | |
Default 0.0 | |
num_fcs (int): The number of linear in FFN | |
Default: 2 | |
qkv_bias (bool): enable bias for qkv if True. | |
Default: True | |
act_cfg (dict): The activation config for FFNs. | |
Default: dict(type='GELU') | |
norm_cfg (dict): Config dict for normalization layer. | |
Default: dict(type='LN') | |
layer_id (int): The layer id of current layer. Used in RevBackProp. | |
Default: 0 | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
""" | |
def __init__(self, | |
embed_dims: int, | |
num_heads: int, | |
feedforward_channels: int, | |
drop_rate: float = 0., | |
attn_drop_rate: float = 0., | |
drop_path_rate: float = 0., | |
num_fcs: int = 2, | |
qkv_bias: bool = True, | |
act_cfg: dict = dict(type='GELU'), | |
norm_cfg: dict = dict(type='LN'), | |
layer_id: int = 0, | |
init_cfg=None): | |
super(RevTransformerEncoderLayer, self).__init__(init_cfg=init_cfg) | |
self.drop_path_cfg = dict(type='DropPath', drop_prob=drop_path_rate) | |
self.embed_dims = embed_dims | |
self.ln1 = build_norm_layer(norm_cfg, self.embed_dims) | |
self.attn = MultiheadAttention( | |
embed_dims=embed_dims, | |
num_heads=num_heads, | |
attn_drop=attn_drop_rate, | |
proj_drop=drop_rate, | |
qkv_bias=qkv_bias) | |
self.ln2 = build_norm_layer(norm_cfg, self.embed_dims) | |
self.ffn = FFN( | |
embed_dims=embed_dims, | |
feedforward_channels=feedforward_channels, | |
num_fcs=num_fcs, | |
ffn_drop=drop_rate, | |
act_cfg=act_cfg, | |
add_identity=False) | |
self.layer_id = layer_id | |
self.seeds = {} | |
def init_weights(self): | |
super(RevTransformerEncoderLayer, self).init_weights() | |
for m in self.ffn.modules(): | |
if isinstance(m, nn.Linear): | |
nn.init.xavier_uniform_(m.weight) | |
nn.init.normal_(m.bias, std=1e-6) | |
def seed_cuda(self, key): | |
"""Fix seeds to allow for stochastic elements such as dropout to be | |
reproduced exactly in activation recomputation in the backward pass.""" | |
# randomize seeds | |
# use cuda generator if available | |
if (hasattr(torch.cuda, 'default_generators') | |
and len(torch.cuda.default_generators) > 0): | |
# GPU | |
device_idx = torch.cuda.current_device() | |
seed = torch.cuda.default_generators[device_idx].seed() | |
else: | |
# CPU | |
seed = int(torch.seed() % sys.maxsize) | |
self.seeds[key] = seed | |
torch.manual_seed(self.seeds[key]) | |
def forward(self, x1, x2): | |
""" | |
Implementation of Reversible TransformerEncoderLayer | |
` | |
x = x + self.attn(self.ln1(x)) | |
x = self.ffn(self.ln2(x), identity=x) | |
` | |
""" | |
self.seed_cuda('attn') | |
# attention output | |
f_x2 = self.attn(self.ln1(x2)) | |
# apply droppath on attention output | |
self.seed_cuda('droppath') | |
f_x2_dropped = build_dropout(self.drop_path_cfg)(f_x2) | |
y1 = x1 + f_x2_dropped | |
# free memory | |
if self.training: | |
del x1 | |
# ffn output | |
self.seed_cuda('ffn') | |
g_y1 = self.ffn(self.ln2(y1)) | |
# apply droppath on ffn output | |
torch.manual_seed(self.seeds['droppath']) | |
g_y1_dropped = build_dropout(self.drop_path_cfg)(g_y1) | |
# final output | |
y2 = x2 + g_y1_dropped | |
# free memory | |
if self.training: | |
del x2 | |
return y1, y2 | |
def backward_pass(self, y1, y2, d_y1, d_y2): | |
"""Activation re-compute with the following equation. | |
x2 = y2 - g(y1), g = FFN | |
x1 = y1 - f(x2), f = MSHA | |
""" | |
# temporarily record intermediate activation for G | |
# and use them for gradient calculation of G | |
with torch.enable_grad(): | |
y1.requires_grad = True | |
torch.manual_seed(self.seeds['ffn']) | |
g_y1 = self.ffn(self.ln2(y1)) | |
torch.manual_seed(self.seeds['droppath']) | |
g_y1 = build_dropout(self.drop_path_cfg)(g_y1) | |
g_y1.backward(d_y2, retain_graph=True) | |
# activate recomputation is by design and not part of | |
# the computation graph in forward pass | |
with torch.no_grad(): | |
x2 = y2 - g_y1 | |
del g_y1 | |
d_y1 = d_y1 + y1.grad | |
y1.grad = None | |
# record F activation and calculate gradients on F | |
with torch.enable_grad(): | |
x2.requires_grad = True | |
torch.manual_seed(self.seeds['attn']) | |
f_x2 = self.attn(self.ln1(x2)) | |
torch.manual_seed(self.seeds['droppath']) | |
f_x2 = build_dropout(self.drop_path_cfg)(f_x2) | |
f_x2.backward(d_y1, retain_graph=True) | |
# propagate reverse computed activations at the | |
# start of the previous block | |
with torch.no_grad(): | |
x1 = y1 - f_x2 | |
del f_x2, y1 | |
d_y2 = d_y2 + x2.grad | |
x2.grad = None | |
x2 = x2.detach() | |
return x1, x2, d_y1, d_y2 | |
class TwoStreamFusion(nn.Module): | |
"""A general constructor for neural modules fusing two equal sized tensors | |
in forward. | |
Args: | |
mode (str): The mode of fusion. Options are 'add', 'max', 'min', | |
'avg', 'concat'. | |
""" | |
def __init__(self, mode: str): | |
super().__init__() | |
self.mode = mode | |
if mode == 'add': | |
self.fuse_fn = lambda x: torch.stack(x).sum(dim=0) | |
elif mode == 'max': | |
self.fuse_fn = lambda x: torch.stack(x).max(dim=0).values | |
elif mode == 'min': | |
self.fuse_fn = lambda x: torch.stack(x).min(dim=0).values | |
elif mode == 'avg': | |
self.fuse_fn = lambda x: torch.stack(x).mean(dim=0) | |
elif mode == 'concat': | |
self.fuse_fn = lambda x: torch.cat(x, dim=-1) | |
else: | |
raise NotImplementedError | |
def forward(self, x): | |
# split the tensor into two halves in the channel dimension | |
x = torch.chunk(x, 2, dim=2) | |
return self.fuse_fn(x) | |
class RevVisionTransformer(BaseBackbone): | |
"""Reversible Vision Transformer. | |
A PyTorch implementation of : `Reversible Vision Transformers | |
<https://openaccess.thecvf.com/content/CVPR2022/html/Mangalam_Reversible_Vision_Transformers_CVPR_2022_paper.html>`_ # noqa: E501 | |
Args: | |
arch (str | dict): Vision Transformer architecture. If use string, | |
choose from 'small', 'base', 'large', 'deit-tiny', 'deit-small' | |
and 'deit-base'. If use dict, it should have below keys: | |
- **embed_dims** (int): The dimensions of embedding. | |
- **num_layers** (int): The number of transformer encoder layers. | |
- **num_heads** (int): The number of heads in attention modules. | |
- **feedforward_channels** (int): The hidden dimensions in | |
feedforward modules. | |
Defaults to 'base'. | |
img_size (int | tuple): The expected input image shape. Because we | |
support dynamic input shape, just set the argument to the most | |
common input image shape. Defaults to 224. | |
patch_size (int | tuple): The patch size in patch embedding. | |
Defaults to 16. | |
in_channels (int): The num of input channels. Defaults to 3. | |
drop_rate (float): Probability of an element to be zeroed. | |
Defaults to 0. | |
drop_path_rate (float): stochastic depth rate. Defaults to 0. | |
qkv_bias (bool): Whether to add bias for qkv in attention modules. | |
Defaults to True. | |
norm_cfg (dict): Config dict for normalization layer. | |
Defaults to ``dict(type='LN')``. | |
final_norm (bool): Whether to add a additional layer to normalize | |
final feature map. Defaults to True. | |
out_type (str): The type of output features. Please choose from | |
- ``"cls_token"``: The class token tensor with shape (B, C). | |
- ``"featmap"``: The feature map tensor from the patch tokens | |
with shape (B, C, H, W). | |
- ``"avg_featmap"``: The global averaged feature map tensor | |
with shape (B, C). | |
- ``"raw"``: The raw feature tensor includes patch tokens and | |
class tokens with shape (B, L, C). | |
Defaults to ``"avg_featmap"``. | |
with_cls_token (bool): Whether concatenating class token into image | |
tokens as transformer input. Defaults to False. | |
frozen_stages (int): Stages to be frozen (stop grad and set eval mode). | |
-1 means not freezing any parameters. Defaults to -1. | |
interpolate_mode (str): Select the interpolate mode for position | |
embeding vector resize. Defaults to "bicubic". | |
patch_cfg (dict): Configs of patch embeding. Defaults to an empty dict. | |
layer_cfgs (Sequence | dict): Configs of each transformer layer in | |
encoder. Defaults to an empty dict. | |
fusion_mode (str): The fusion mode of transformer layers. | |
Defaults to 'concat'. | |
no_custom_backward (bool): Whether to use custom backward. | |
Defaults to False. | |
init_cfg (dict, optional): Initialization config dict. | |
Defaults to None. | |
""" | |
arch_zoo = { | |
**dict.fromkeys( | |
['s', 'small'], { | |
'embed_dims': 768, | |
'num_layers': 8, | |
'num_heads': 8, | |
'feedforward_channels': 768 * 3, | |
}), | |
**dict.fromkeys( | |
['b', 'base'], { | |
'embed_dims': 768, | |
'num_layers': 12, | |
'num_heads': 12, | |
'feedforward_channels': 3072 | |
}), | |
**dict.fromkeys( | |
['l', 'large'], { | |
'embed_dims': 1024, | |
'num_layers': 24, | |
'num_heads': 16, | |
'feedforward_channels': 4096 | |
}), | |
**dict.fromkeys( | |
['h', 'huge'], | |
{ | |
# The same as the implementation in MAE | |
# <https://arxiv.org/abs/2111.06377> | |
'embed_dims': 1280, | |
'num_layers': 32, | |
'num_heads': 16, | |
'feedforward_channels': 5120 | |
}), | |
**dict.fromkeys( | |
['deit-t', 'deit-tiny'], { | |
'embed_dims': 192, | |
'num_layers': 12, | |
'num_heads': 3, | |
'feedforward_channels': 192 * 4 | |
}), | |
**dict.fromkeys( | |
['deit-s', 'deit-small'], { | |
'embed_dims': 384, | |
'num_layers': 12, | |
'num_heads': 6, | |
'feedforward_channels': 384 * 4 | |
}), | |
**dict.fromkeys( | |
['deit-b', 'deit-base'], { | |
'embed_dims': 768, | |
'num_layers': 12, | |
'num_heads': 12, | |
'feedforward_channels': 768 * 4 | |
}), | |
} | |
num_extra_tokens = 0 # The official RevViT doesn't have class token | |
OUT_TYPES = {'raw', 'cls_token', 'featmap', 'avg_featmap'} | |
def __init__(self, | |
arch='base', | |
img_size=224, | |
patch_size=16, | |
in_channels=3, | |
drop_rate=0., | |
drop_path_rate=0., | |
qkv_bias=True, | |
norm_cfg=dict(type='LN', eps=1e-6), | |
final_norm=True, | |
out_type='avg_featmap', | |
with_cls_token=False, | |
frozen_stages=-1, | |
interpolate_mode='bicubic', | |
patch_cfg=dict(), | |
layer_cfgs=dict(), | |
fusion_mode='concat', | |
no_custom_backward=False, | |
init_cfg=None): | |
super(RevVisionTransformer, self).__init__(init_cfg) | |
if isinstance(arch, str): | |
arch = arch.lower() | |
assert arch in set(self.arch_zoo), \ | |
f'Arch {arch} is not in default archs {set(self.arch_zoo)}' | |
self.arch_settings = self.arch_zoo[arch] | |
else: | |
essential_keys = { | |
'embed_dims', 'num_layers', 'num_heads', 'feedforward_channels' | |
} | |
assert isinstance(arch, dict) and essential_keys <= set(arch), \ | |
f'Custom arch needs a dict with keys {essential_keys}' | |
self.arch_settings = arch | |
self.embed_dims = self.arch_settings['embed_dims'] | |
self.num_layers = self.arch_settings['num_layers'] | |
self.img_size = to_2tuple(img_size) | |
self.no_custom_backward = no_custom_backward | |
# Set patch embedding | |
_patch_cfg = dict( | |
in_channels=in_channels, | |
input_size=img_size, | |
embed_dims=self.embed_dims, | |
conv_type='Conv2d', | |
kernel_size=patch_size, | |
stride=patch_size, | |
) | |
_patch_cfg.update(patch_cfg) | |
self.patch_embed = PatchEmbed(**_patch_cfg) | |
self.patch_resolution = self.patch_embed.init_out_size | |
num_patches = self.patch_resolution[0] * self.patch_resolution[1] | |
# Set out type | |
if out_type not in self.OUT_TYPES: | |
raise ValueError(f'Unsupported `out_type` {out_type}, please ' | |
f'choose from {self.OUT_TYPES}') | |
self.out_type = out_type | |
# Set cls token | |
if with_cls_token: | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dims)) | |
self.num_extra_tokens = 1 | |
elif out_type != 'cls_token': | |
self.cls_token = None | |
self.num_extra_tokens = 0 | |
else: | |
raise ValueError( | |
'with_cls_token must be True when `out_type="cls_token"`.') | |
# Set position embedding | |
self.interpolate_mode = interpolate_mode | |
self.pos_embed = nn.Parameter( | |
torch.zeros(1, num_patches + self.num_extra_tokens, | |
self.embed_dims)) | |
self._register_load_state_dict_pre_hook(self._prepare_pos_embed) | |
self.drop_after_pos = nn.Dropout(p=drop_rate) | |
# stochastic depth decay rule | |
dpr = np.linspace(0, drop_path_rate, self.num_layers) | |
self.layers = ModuleList() | |
if isinstance(layer_cfgs, dict): | |
layer_cfgs = [layer_cfgs] * self.num_layers | |
for i in range(self.num_layers): | |
_layer_cfg = dict( | |
embed_dims=self.embed_dims, | |
num_heads=self.arch_settings['num_heads'], | |
feedforward_channels=self. | |
arch_settings['feedforward_channels'], | |
drop_rate=drop_rate, | |
drop_path_rate=dpr[i], | |
qkv_bias=qkv_bias, | |
layer_id=i, | |
norm_cfg=norm_cfg) | |
_layer_cfg.update(layer_cfgs[i]) | |
self.layers.append(RevTransformerEncoderLayer(**_layer_cfg)) | |
# fusion operation for the final output | |
self.fusion_layer = TwoStreamFusion(mode=fusion_mode) | |
self.frozen_stages = frozen_stages | |
self.final_norm = final_norm | |
if final_norm: | |
self.ln1 = build_norm_layer(norm_cfg, self.embed_dims * 2) | |
# freeze stages only when self.frozen_stages > 0 | |
if self.frozen_stages > 0: | |
self._freeze_stages() | |
def init_weights(self): | |
super(RevVisionTransformer, self).init_weights() | |
if not (isinstance(self.init_cfg, dict) | |
and self.init_cfg['type'] == 'Pretrained'): | |
trunc_normal_(self.pos_embed, std=0.02) | |
def _prepare_pos_embed(self, state_dict, prefix, *args, **kwargs): | |
name = prefix + 'pos_embed' | |
if name not in state_dict.keys(): | |
return | |
ckpt_pos_embed_shape = state_dict[name].shape | |
if self.pos_embed.shape != ckpt_pos_embed_shape: | |
from mmengine.logging import MMLogger | |
logger = MMLogger.get_current_instance() | |
logger.info( | |
f'Resize the pos_embed shape from {ckpt_pos_embed_shape} ' | |
f'to {self.pos_embed.shape}.') | |
ckpt_pos_embed_shape = to_2tuple( | |
int(np.sqrt(ckpt_pos_embed_shape[1] - self.num_extra_tokens))) | |
pos_embed_shape = self.patch_embed.init_out_size | |
state_dict[name] = resize_pos_embed(state_dict[name], | |
ckpt_pos_embed_shape, | |
pos_embed_shape, | |
self.interpolate_mode, | |
self.num_extra_tokens) | |
def resize_pos_embed(*args, **kwargs): | |
"""Interface for backward-compatibility.""" | |
return resize_pos_embed(*args, **kwargs) | |
def _freeze_stages(self): | |
# freeze position embedding | |
self.pos_embed.requires_grad = False | |
# set dropout to eval model | |
self.drop_after_pos.eval() | |
# freeze patch embedding | |
self.patch_embed.eval() | |
for param in self.patch_embed.parameters(): | |
param.requires_grad = False | |
# freeze cls_token | |
if self.cls_token is not None: | |
self.cls_token.requires_grad = False | |
# freeze layers | |
for i in range(1, self.frozen_stages + 1): | |
m = self.layers[i - 1] | |
m.eval() | |
for param in m.parameters(): | |
param.requires_grad = False | |
# freeze the last layer norm | |
if self.frozen_stages == len(self.layers) and self.final_norm: | |
self.ln1.eval() | |
for param in self.ln1.parameters(): | |
param.requires_grad = False | |
def forward(self, x): | |
B = x.shape[0] | |
x, patch_resolution = self.patch_embed(x) | |
if self.cls_token is not None: | |
cls_token = self.cls_token.expand(B, -1, -1) | |
x = torch.cat((cls_token, x), dim=1) | |
x = x + resize_pos_embed( | |
self.pos_embed, | |
self.patch_resolution, | |
patch_resolution, | |
mode=self.interpolate_mode, | |
num_extra_tokens=self.num_extra_tokens) | |
x = self.drop_after_pos(x) | |
x = torch.cat([x, x], dim=-1) | |
# forward with different conditions | |
if not self.training or self.no_custom_backward: | |
# in eval/inference model | |
executing_fn = RevVisionTransformer._forward_vanilla_bp | |
else: | |
# use custom backward when self.training=True. | |
executing_fn = RevBackProp.apply | |
x = executing_fn(x, self.layers, []) | |
if self.final_norm: | |
x = self.ln1(x) | |
x = self.fusion_layer(x) | |
return (self._format_output(x, patch_resolution), ) | |
def _forward_vanilla_bp(hidden_state, layers, buffer=[]): | |
"""Using reversible layers without reversible backpropagation. | |
Debugging purpose only. Activated with self.no_custom_backward | |
""" | |
# split into ffn state(ffn_out) and attention output(attn_out) | |
ffn_out, attn_out = torch.chunk(hidden_state, 2, dim=-1) | |
del hidden_state | |
for _, layer in enumerate(layers): | |
attn_out, ffn_out = layer(attn_out, ffn_out) | |
return torch.cat([attn_out, ffn_out], dim=-1) | |
def _format_output(self, x, hw): | |
if self.out_type == 'raw': | |
return x | |
if self.out_type == 'cls_token': | |
return x[:, 0] | |
patch_token = x[:, self.num_extra_tokens:] | |
if self.out_type == 'featmap': | |
B = x.size(0) | |
# (B, N, C) -> (B, H, W, C) -> (B, C, H, W) | |
return patch_token.reshape(B, *hw, -1).permute(0, 3, 1, 2) | |
if self.out_type == 'avg_featmap': | |
return patch_token.mean(dim=1) | |