Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch.utils.checkpoint as cp | |
from mmpretrain.registry import MODELS | |
from ..utils.se_layer import SELayer | |
from .resnet import Bottleneck, ResLayer, ResNet | |
class SEBottleneck(Bottleneck): | |
"""SEBottleneck block for SEResNet. | |
Args: | |
in_channels (int): The input channels of the SEBottleneck block. | |
out_channels (int): The output channel of the SEBottleneck block. | |
se_ratio (int): Squeeze ratio in SELayer. Default: 16 | |
""" | |
def __init__(self, in_channels, out_channels, se_ratio=16, **kwargs): | |
super(SEBottleneck, self).__init__(in_channels, out_channels, **kwargs) | |
self.se_layer = SELayer(out_channels, ratio=se_ratio) | |
def forward(self, x): | |
def _inner_forward(x): | |
identity = x | |
out = self.conv1(x) | |
out = self.norm1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.norm2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.norm3(out) | |
out = self.se_layer(out) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out += identity | |
return out | |
if self.with_cp and x.requires_grad: | |
out = cp.checkpoint(_inner_forward, x) | |
else: | |
out = _inner_forward(x) | |
out = self.relu(out) | |
return out | |
class SEResNet(ResNet): | |
"""SEResNet backbone. | |
Please refer to the `paper <https://arxiv.org/abs/1709.01507>`__ for | |
details. | |
Args: | |
depth (int): Network depth, from {50, 101, 152}. | |
se_ratio (int): Squeeze ratio in SELayer. Default: 16. | |
in_channels (int): Number of input image channels. Default: 3. | |
stem_channels (int): Output channels of the stem layer. Default: 64. | |
num_stages (int): Stages of the network. Default: 4. | |
strides (Sequence[int]): Strides of the first block of each stage. | |
Default: ``(1, 2, 2, 2)``. | |
dilations (Sequence[int]): Dilation of each stage. | |
Default: ``(1, 1, 1, 1)``. | |
out_indices (Sequence[int]): Output from which stages. If only one | |
stage is specified, a single tensor (feature map) is returned, | |
otherwise multiple stages are specified, a tuple of tensors will | |
be returned. Default: ``(3, )``. | |
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two | |
layer is the 3x3 conv layer, otherwise the stride-two layer is | |
the first 1x1 conv layer. | |
deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv. | |
Default: False. | |
avg_down (bool): Use AvgPool instead of stride conv when | |
downsampling in the bottleneck. Default: False. | |
frozen_stages (int): Stages to be frozen (stop grad and set eval mode). | |
-1 means not freezing any parameters. Default: -1. | |
conv_cfg (dict | None): The config dict for conv layers. Default: None. | |
norm_cfg (dict): The config dict for norm layers. | |
norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
freeze running stats (mean and var). Note: Effect on Batch Norm | |
and its variants only. Default: False. | |
with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
memory while slowing down the training speed. Default: False. | |
zero_init_residual (bool): Whether to use zero init for last norm layer | |
in resblocks to let them behave as identity. Default: True. | |
Example: | |
>>> from mmpretrain.models import SEResNet | |
>>> import torch | |
>>> self = SEResNet(depth=50) | |
>>> self.eval() | |
>>> inputs = torch.rand(1, 3, 224, 224) | |
>>> level_outputs = self.forward(inputs) | |
>>> for level_out in level_outputs: | |
... print(tuple(level_out.shape)) | |
(1, 64, 56, 56) | |
(1, 128, 28, 28) | |
(1, 256, 14, 14) | |
(1, 512, 7, 7) | |
""" | |
arch_settings = { | |
50: (SEBottleneck, (3, 4, 6, 3)), | |
101: (SEBottleneck, (3, 4, 23, 3)), | |
152: (SEBottleneck, (3, 8, 36, 3)) | |
} | |
def __init__(self, depth, se_ratio=16, **kwargs): | |
if depth not in self.arch_settings: | |
raise KeyError(f'invalid depth {depth} for SEResNet') | |
self.se_ratio = se_ratio | |
super(SEResNet, self).__init__(depth, **kwargs) | |
def make_res_layer(self, **kwargs): | |
return ResLayer(se_ratio=self.se_ratio, **kwargs) | |