Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch | |
import torch.nn as nn | |
import torch.utils.checkpoint as cp | |
from mmcv.cnn import ConvModule | |
from mmengine.model import BaseModule | |
from mmengine.model.weight_init import constant_init, normal_init | |
from torch.nn.modules.batchnorm import _BatchNorm | |
from mmpretrain.models.utils import channel_shuffle | |
from mmpretrain.registry import MODELS | |
from .base_backbone import BaseBackbone | |
class InvertedResidual(BaseModule): | |
"""InvertedResidual block for ShuffleNetV2 backbone. | |
Args: | |
in_channels (int): The input channels of the block. | |
out_channels (int): The output channels of the block. | |
stride (int): Stride of the 3x3 convolution layer. Default: 1 | |
conv_cfg (dict, optional): Config dict for convolution layer. | |
Default: None, which means using conv2d. | |
norm_cfg (dict): Config dict for normalization layer. | |
Default: dict(type='BN'). | |
act_cfg (dict): Config dict for activation layer. | |
Default: dict(type='ReLU'). | |
with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
memory while slowing down the training speed. Default: False. | |
Returns: | |
Tensor: The output tensor. | |
""" | |
def __init__(self, | |
in_channels, | |
out_channels, | |
stride=1, | |
conv_cfg=None, | |
norm_cfg=dict(type='BN'), | |
act_cfg=dict(type='ReLU'), | |
with_cp=False, | |
init_cfg=None): | |
super(InvertedResidual, self).__init__(init_cfg) | |
self.stride = stride | |
self.with_cp = with_cp | |
branch_features = out_channels // 2 | |
if self.stride == 1: | |
assert in_channels == branch_features * 2, ( | |
f'in_channels ({in_channels}) should equal to ' | |
f'branch_features * 2 ({branch_features * 2}) ' | |
'when stride is 1') | |
if in_channels != branch_features * 2: | |
assert self.stride != 1, ( | |
f'stride ({self.stride}) should not equal 1 when ' | |
f'in_channels != branch_features * 2') | |
if self.stride > 1: | |
self.branch1 = nn.Sequential( | |
ConvModule( | |
in_channels, | |
in_channels, | |
kernel_size=3, | |
stride=self.stride, | |
padding=1, | |
groups=in_channels, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=None), | |
ConvModule( | |
in_channels, | |
branch_features, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg), | |
) | |
self.branch2 = nn.Sequential( | |
ConvModule( | |
in_channels if (self.stride > 1) else branch_features, | |
branch_features, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg), | |
ConvModule( | |
branch_features, | |
branch_features, | |
kernel_size=3, | |
stride=self.stride, | |
padding=1, | |
groups=branch_features, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=None), | |
ConvModule( | |
branch_features, | |
branch_features, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg)) | |
def forward(self, x): | |
def _inner_forward(x): | |
if self.stride > 1: | |
out = torch.cat((self.branch1(x), self.branch2(x)), dim=1) | |
else: | |
# Channel Split operation. using these lines of code to replace | |
# ``chunk(x, 2, dim=1)`` can make it easier to deploy a | |
# shufflenetv2 model by using mmdeploy. | |
channels = x.shape[1] | |
c = channels // 2 + channels % 2 | |
x1 = x[:, :c, :, :] | |
x2 = x[:, c:, :, :] | |
out = torch.cat((x1, self.branch2(x2)), dim=1) | |
out = channel_shuffle(out, 2) | |
return out | |
if self.with_cp and x.requires_grad: | |
out = cp.checkpoint(_inner_forward, x) | |
else: | |
out = _inner_forward(x) | |
return out | |
class ShuffleNetV2(BaseBackbone): | |
"""ShuffleNetV2 backbone. | |
Args: | |
widen_factor (float): Width multiplier - adjusts the number of | |
channels in each layer by this amount. Default: 1.0. | |
out_indices (Sequence[int]): Output from which stages. | |
Default: (0, 1, 2, 3). | |
frozen_stages (int): Stages to be frozen (all param fixed). | |
Default: -1, which means not freezing any parameters. | |
conv_cfg (dict, optional): Config dict for convolution layer. | |
Default: None, which means using conv2d. | |
norm_cfg (dict): Config dict for normalization layer. | |
Default: dict(type='BN'). | |
act_cfg (dict): Config dict for activation layer. | |
Default: dict(type='ReLU'). | |
norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
freeze running stats (mean and var). Note: Effect on Batch Norm | |
and its variants only. Default: False. | |
with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
memory while slowing down the training speed. Default: False. | |
""" | |
def __init__(self, | |
widen_factor=1.0, | |
out_indices=(3, ), | |
frozen_stages=-1, | |
conv_cfg=None, | |
norm_cfg=dict(type='BN'), | |
act_cfg=dict(type='ReLU'), | |
norm_eval=False, | |
with_cp=False, | |
init_cfg=None): | |
super(ShuffleNetV2, self).__init__(init_cfg) | |
self.stage_blocks = [4, 8, 4] | |
for index in out_indices: | |
if index not in range(0, 4): | |
raise ValueError('the item in out_indices must in ' | |
f'range(0, 4). But received {index}') | |
if frozen_stages not in range(-1, 4): | |
raise ValueError('frozen_stages must be in range(-1, 4). ' | |
f'But received {frozen_stages}') | |
self.out_indices = out_indices | |
self.frozen_stages = frozen_stages | |
self.conv_cfg = conv_cfg | |
self.norm_cfg = norm_cfg | |
self.act_cfg = act_cfg | |
self.norm_eval = norm_eval | |
self.with_cp = with_cp | |
if widen_factor == 0.5: | |
channels = [48, 96, 192, 1024] | |
elif widen_factor == 1.0: | |
channels = [116, 232, 464, 1024] | |
elif widen_factor == 1.5: | |
channels = [176, 352, 704, 1024] | |
elif widen_factor == 2.0: | |
channels = [244, 488, 976, 2048] | |
else: | |
raise ValueError('widen_factor must be in [0.5, 1.0, 1.5, 2.0]. ' | |
f'But received {widen_factor}') | |
self.in_channels = 24 | |
self.conv1 = ConvModule( | |
in_channels=3, | |
out_channels=self.in_channels, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.layers = nn.ModuleList() | |
for i, num_blocks in enumerate(self.stage_blocks): | |
layer = self._make_layer(channels[i], num_blocks) | |
self.layers.append(layer) | |
output_channels = channels[-1] | |
self.layers.append( | |
ConvModule( | |
in_channels=self.in_channels, | |
out_channels=output_channels, | |
kernel_size=1, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg)) | |
def _make_layer(self, out_channels, num_blocks): | |
"""Stack blocks to make a layer. | |
Args: | |
out_channels (int): out_channels of the block. | |
num_blocks (int): number of blocks. | |
""" | |
layers = [] | |
for i in range(num_blocks): | |
stride = 2 if i == 0 else 1 | |
layers.append( | |
InvertedResidual( | |
in_channels=self.in_channels, | |
out_channels=out_channels, | |
stride=stride, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg, | |
with_cp=self.with_cp)) | |
self.in_channels = out_channels | |
return nn.Sequential(*layers) | |
def _freeze_stages(self): | |
if self.frozen_stages >= 0: | |
for param in self.conv1.parameters(): | |
param.requires_grad = False | |
for i in range(self.frozen_stages): | |
m = self.layers[i] | |
m.eval() | |
for param in m.parameters(): | |
param.requires_grad = False | |
def init_weights(self): | |
super(ShuffleNetV2, self).init_weights() | |
if (isinstance(self.init_cfg, dict) | |
and self.init_cfg['type'] == 'Pretrained'): | |
# Suppress default init if use pretrained model. | |
return | |
for name, m in self.named_modules(): | |
if isinstance(m, nn.Conv2d): | |
if 'conv1' in name: | |
normal_init(m, mean=0, std=0.01) | |
else: | |
normal_init(m, mean=0, std=1.0 / m.weight.shape[1]) | |
elif isinstance(m, (_BatchNorm, nn.GroupNorm)): | |
constant_init(m.weight, val=1, bias=0.0001) | |
if isinstance(m, _BatchNorm): | |
if m.running_mean is not None: | |
nn.init.constant_(m.running_mean, 0) | |
def forward(self, x): | |
x = self.conv1(x) | |
x = self.maxpool(x) | |
outs = [] | |
for i, layer in enumerate(self.layers): | |
x = layer(x) | |
if i in self.out_indices: | |
outs.append(x) | |
return tuple(outs) | |
def train(self, mode=True): | |
super(ShuffleNetV2, self).train(mode) | |
self._freeze_stages() | |
if mode and self.norm_eval: | |
for m in self.modules(): | |
if isinstance(m, nn.BatchNorm2d): | |
m.eval() | |