Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import math | |
from typing import Optional | |
import torch | |
import torch.nn as nn | |
from mmengine.model import BaseModule | |
from mmpretrain.registry import MODELS | |
from ..utils import build_norm_layer | |
def is_pow2n(x): | |
return x > 0 and (x & (x - 1) == 0) | |
class ConvBlock2x(BaseModule): | |
"""The definition of convolution block.""" | |
def __init__(self, | |
in_channels: int, | |
out_channels: int, | |
mid_channels: int, | |
norm_cfg: dict, | |
act_cfg: dict, | |
last_act: bool, | |
init_cfg: Optional[dict] = None) -> None: | |
super().__init__(init_cfg=init_cfg) | |
self.conv1 = nn.Conv2d(in_channels, mid_channels, 3, 1, 1, bias=False) | |
self.norm1 = build_norm_layer(norm_cfg, mid_channels) | |
self.activate1 = MODELS.build(act_cfg) | |
self.conv2 = nn.Conv2d(mid_channels, out_channels, 3, 1, 1, bias=False) | |
self.norm2 = build_norm_layer(norm_cfg, out_channels) | |
self.activate2 = MODELS.build(act_cfg) if last_act else nn.Identity() | |
def forward(self, x: torch.Tensor): | |
out = self.conv1(x) | |
out = self.norm1(out) | |
out = self.activate1(out) | |
out = self.conv2(out) | |
out = self.norm2(out) | |
out = self.activate2(out) | |
return out | |
class DecoderConvModule(BaseModule): | |
"""The convolution module of decoder with upsampling.""" | |
def __init__(self, | |
in_channels: int, | |
out_channels: int, | |
mid_channels: int, | |
kernel_size: int = 4, | |
scale_factor: int = 2, | |
num_conv_blocks: int = 1, | |
norm_cfg: dict = dict(type='SyncBN'), | |
act_cfg: dict = dict(type='ReLU6'), | |
last_act: bool = True, | |
init_cfg: Optional[dict] = None): | |
super().__init__(init_cfg=init_cfg) | |
assert (kernel_size - scale_factor >= 0) and\ | |
(kernel_size - scale_factor) % 2 == 0,\ | |
f'kernel_size should be greater than or equal to scale_factor '\ | |
f'and (kernel_size - scale_factor) should be even numbers, '\ | |
f'while the kernel size is {kernel_size} and scale_factor is '\ | |
f'{scale_factor}.' | |
padding = (kernel_size - scale_factor) // 2 | |
self.upsample = nn.ConvTranspose2d( | |
in_channels, | |
in_channels, | |
kernel_size=kernel_size, | |
stride=scale_factor, | |
padding=padding, | |
bias=True) | |
conv_blocks_list = [ | |
ConvBlock2x( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
mid_channels=mid_channels, | |
norm_cfg=norm_cfg, | |
last_act=last_act, | |
act_cfg=act_cfg) for _ in range(num_conv_blocks) | |
] | |
self.conv_blocks = nn.Sequential(*conv_blocks_list) | |
def forward(self, x): | |
x = self.upsample(x) | |
return self.conv_blocks(x) | |
class SparKLightDecoder(BaseModule): | |
"""The decoder for SparK, which upsamples the feature maps. | |
Args: | |
feature_dim (int): The dimension of feature map. | |
upsample_ratio (int): The ratio of upsample, equal to downsample_raito | |
of the algorithm. | |
mid_channels (int): The middle channel of `DecoderConvModule`. Defaults | |
to 0. | |
kernel_size (int): The kernel size of `ConvTranspose2d` in | |
`DecoderConvModule`. Defaults to 4. | |
scale_factor (int): The scale_factor of `ConvTranspose2d` in | |
`DecoderConvModule`. Defaults to 2. | |
num_conv_blocks (int): The number of convolution blocks in | |
`DecoderConvModule`. Defaults to 1. | |
norm_cfg (dict): Normalization config. Defaults to dict(type='SyncBN'). | |
act_cfg (dict): Activation config. Defaults to dict(type='ReLU6'). | |
last_act (bool): Whether apply the last activation in | |
`DecoderConvModule`. Defaults to False. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
""" | |
def __init__( | |
self, | |
feature_dim: int, | |
upsample_ratio: int, | |
mid_channels: int = 0, | |
kernel_size: int = 4, | |
scale_factor: int = 2, | |
num_conv_blocks: int = 1, | |
norm_cfg: dict = dict(type='SyncBN'), | |
act_cfg: dict = dict(type='ReLU6'), | |
last_act: bool = False, | |
init_cfg: Optional[dict] = [ | |
dict(type='Kaiming', layer=['Conv2d', 'ConvTranspose2d']), | |
dict(type='TruncNormal', std=0.02, layer=['Linear']), | |
dict( | |
type='Constant', | |
val=1, | |
layer=['_BatchNorm', 'LayerNorm', 'SyncBatchNorm']) | |
], | |
): | |
super().__init__(init_cfg=init_cfg) | |
self.feature_dim = feature_dim | |
assert is_pow2n(upsample_ratio) | |
n = round(math.log2(upsample_ratio)) | |
channels = [feature_dim // 2**i for i in range(n + 1)] | |
self.decoder = nn.ModuleList([ | |
DecoderConvModule( | |
in_channels=c_in, | |
out_channels=c_out, | |
mid_channels=c_in if mid_channels == 0 else mid_channels, | |
kernel_size=kernel_size, | |
scale_factor=scale_factor, | |
num_conv_blocks=num_conv_blocks, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg, | |
last_act=last_act) | |
for (c_in, c_out) in zip(channels[:-1], channels[1:]) | |
]) | |
self.proj = nn.Conv2d( | |
channels[-1], 3, kernel_size=1, stride=1, bias=True) | |
def forward(self, to_dec): | |
x = 0 | |
for i, d in enumerate(self.decoder): | |
if i < len(to_dec) and to_dec[i] is not None: | |
x = x + to_dec[i] | |
x = self.decoder[i](x) | |
return self.proj(x) | |