liyy201912's picture
Upload folder using huggingface_hub
cc0dd3c
raw
history blame
5.97 kB
# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import Optional
import torch
import torch.nn as nn
from mmengine.model import BaseModule
from mmpretrain.registry import MODELS
from ..utils import build_norm_layer
def is_pow2n(x):
return x > 0 and (x & (x - 1) == 0)
class ConvBlock2x(BaseModule):
"""The definition of convolution block."""
def __init__(self,
in_channels: int,
out_channels: int,
mid_channels: int,
norm_cfg: dict,
act_cfg: dict,
last_act: bool,
init_cfg: Optional[dict] = None) -> None:
super().__init__(init_cfg=init_cfg)
self.conv1 = nn.Conv2d(in_channels, mid_channels, 3, 1, 1, bias=False)
self.norm1 = build_norm_layer(norm_cfg, mid_channels)
self.activate1 = MODELS.build(act_cfg)
self.conv2 = nn.Conv2d(mid_channels, out_channels, 3, 1, 1, bias=False)
self.norm2 = build_norm_layer(norm_cfg, out_channels)
self.activate2 = MODELS.build(act_cfg) if last_act else nn.Identity()
def forward(self, x: torch.Tensor):
out = self.conv1(x)
out = self.norm1(out)
out = self.activate1(out)
out = self.conv2(out)
out = self.norm2(out)
out = self.activate2(out)
return out
class DecoderConvModule(BaseModule):
"""The convolution module of decoder with upsampling."""
def __init__(self,
in_channels: int,
out_channels: int,
mid_channels: int,
kernel_size: int = 4,
scale_factor: int = 2,
num_conv_blocks: int = 1,
norm_cfg: dict = dict(type='SyncBN'),
act_cfg: dict = dict(type='ReLU6'),
last_act: bool = True,
init_cfg: Optional[dict] = None):
super().__init__(init_cfg=init_cfg)
assert (kernel_size - scale_factor >= 0) and\
(kernel_size - scale_factor) % 2 == 0,\
f'kernel_size should be greater than or equal to scale_factor '\
f'and (kernel_size - scale_factor) should be even numbers, '\
f'while the kernel size is {kernel_size} and scale_factor is '\
f'{scale_factor}.'
padding = (kernel_size - scale_factor) // 2
self.upsample = nn.ConvTranspose2d(
in_channels,
in_channels,
kernel_size=kernel_size,
stride=scale_factor,
padding=padding,
bias=True)
conv_blocks_list = [
ConvBlock2x(
in_channels=in_channels,
out_channels=out_channels,
mid_channels=mid_channels,
norm_cfg=norm_cfg,
last_act=last_act,
act_cfg=act_cfg) for _ in range(num_conv_blocks)
]
self.conv_blocks = nn.Sequential(*conv_blocks_list)
def forward(self, x):
x = self.upsample(x)
return self.conv_blocks(x)
@MODELS.register_module()
class SparKLightDecoder(BaseModule):
"""The decoder for SparK, which upsamples the feature maps.
Args:
feature_dim (int): The dimension of feature map.
upsample_ratio (int): The ratio of upsample, equal to downsample_raito
of the algorithm.
mid_channels (int): The middle channel of `DecoderConvModule`. Defaults
to 0.
kernel_size (int): The kernel size of `ConvTranspose2d` in
`DecoderConvModule`. Defaults to 4.
scale_factor (int): The scale_factor of `ConvTranspose2d` in
`DecoderConvModule`. Defaults to 2.
num_conv_blocks (int): The number of convolution blocks in
`DecoderConvModule`. Defaults to 1.
norm_cfg (dict): Normalization config. Defaults to dict(type='SyncBN').
act_cfg (dict): Activation config. Defaults to dict(type='ReLU6').
last_act (bool): Whether apply the last activation in
`DecoderConvModule`. Defaults to False.
init_cfg (dict or list[dict], optional): Initialization config dict.
"""
def __init__(
self,
feature_dim: int,
upsample_ratio: int,
mid_channels: int = 0,
kernel_size: int = 4,
scale_factor: int = 2,
num_conv_blocks: int = 1,
norm_cfg: dict = dict(type='SyncBN'),
act_cfg: dict = dict(type='ReLU6'),
last_act: bool = False,
init_cfg: Optional[dict] = [
dict(type='Kaiming', layer=['Conv2d', 'ConvTranspose2d']),
dict(type='TruncNormal', std=0.02, layer=['Linear']),
dict(
type='Constant',
val=1,
layer=['_BatchNorm', 'LayerNorm', 'SyncBatchNorm'])
],
):
super().__init__(init_cfg=init_cfg)
self.feature_dim = feature_dim
assert is_pow2n(upsample_ratio)
n = round(math.log2(upsample_ratio))
channels = [feature_dim // 2**i for i in range(n + 1)]
self.decoder = nn.ModuleList([
DecoderConvModule(
in_channels=c_in,
out_channels=c_out,
mid_channels=c_in if mid_channels == 0 else mid_channels,
kernel_size=kernel_size,
scale_factor=scale_factor,
num_conv_blocks=num_conv_blocks,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
last_act=last_act)
for (c_in, c_out) in zip(channels[:-1], channels[1:])
])
self.proj = nn.Conv2d(
channels[-1], 3, kernel_size=1, stride=1, bias=True)
def forward(self, to_dec):
x = 0
for i, d in enumerate(self.decoder):
if i < len(to_dec) and to_dec[i] is not None:
x = x + to_dec[i]
x = self.decoder[i](x)
return self.proj(x)