HumanSD / mmpretrain /models /utils /sparse_modules.py
liyy201912's picture
Upload folder using huggingface_hub
cc0dd3c
raw
history blame
5.43 kB
# Copyright (c) OpenMMLab. All rights reserved.
# Copyright (c) ByteDance, Inc. and its affiliates. All rights reserved.
# Modified from https://github.com/keyu-tian/SparK/blob/main/encoder.py
import torch
import torch.nn as nn
from mmpretrain.registry import MODELS
class SparseHelper:
"""The helper to compute sparse operation with pytorch, such as sparse
convlolution, sparse batch norm, etc."""
_cur_active: torch.Tensor = None
@staticmethod
def _get_active_map_or_index(H: int,
returning_active_map: bool = True
) -> torch.Tensor:
"""Get current active map with (B, 1, f, f) shape or index format."""
# _cur_active with shape (B, 1, f, f)
downsample_raito = H // SparseHelper._cur_active.shape[-1]
active_ex = SparseHelper._cur_active.repeat_interleave(
downsample_raito, 2).repeat_interleave(downsample_raito, 3)
return active_ex if returning_active_map else active_ex.squeeze(
1).nonzero(as_tuple=True)
@staticmethod
def sp_conv_forward(self, x: torch.Tensor) -> torch.Tensor:
"""Sparse convolution forward function."""
x = super(type(self), self).forward(x)
# (b, c, h, w) *= (b, 1, h, w), mask the output of conv
x *= SparseHelper._get_active_map_or_index(
H=x.shape[2], returning_active_map=True)
return x
@staticmethod
def sp_bn_forward(self, x: torch.Tensor) -> torch.Tensor:
"""Sparse batch norm forward function."""
active_index = SparseHelper._get_active_map_or_index(
H=x.shape[2], returning_active_map=False)
# (b, c, h, w) -> (b, h, w, c)
x_permuted = x.permute(0, 2, 3, 1)
# select the features on non-masked positions to form flatten features
# with shape (n, c)
x_flattened = x_permuted[active_index]
# use BN1d to normalize this flatten feature (n, c)
x_flattened = super(type(self), self).forward(x_flattened)
# generate output
output = torch.zeros_like(x_permuted, dtype=x_flattened.dtype)
output[active_index] = x_flattened
# (b, h, w, c) -> (b, c, h, w)
output = output.permute(0, 3, 1, 2)
return output
class SparseConv2d(nn.Conv2d):
"""hack: override the forward function.
See `sp_conv_forward` above for more details
"""
forward = SparseHelper.sp_conv_forward
class SparseMaxPooling(nn.MaxPool2d):
"""hack: override the forward function.
See `sp_conv_forward` above for more details
"""
forward = SparseHelper.sp_conv_forward
class SparseAvgPooling(nn.AvgPool2d):
"""hack: override the forward function.
See `sp_conv_forward` above for more details
"""
forward = SparseHelper.sp_conv_forward
@MODELS.register_module()
class SparseBatchNorm2d(nn.BatchNorm1d):
"""hack: override the forward function.
See `sp_bn_forward` above for more details
"""
forward = SparseHelper.sp_bn_forward
@MODELS.register_module()
class SparseSyncBatchNorm2d(nn.SyncBatchNorm):
"""hack: override the forward function.
See `sp_bn_forward` above for more details
"""
forward = SparseHelper.sp_bn_forward
@MODELS.register_module('SparseLN2d')
class SparseLayerNorm2D(nn.LayerNorm):
"""Implementation of sparse LayerNorm on channels for 2d images."""
def forward(self,
x: torch.Tensor,
data_format='channel_first') -> torch.Tensor:
"""Sparse layer norm forward function with 2D data.
Args:
x (torch.Tensor): The input tensor.
data_format (str): The format of the input tensor. If
``"channel_first"``, the shape of the input tensor should be
(B, C, H, W). If ``"channel_last"``, the shape of the input
tensor should be (B, H, W, C). Defaults to "channel_first".
"""
assert x.dim() == 4, (
f'LayerNorm2d only supports inputs with shape '
f'(N, C, H, W), but got tensor with shape {x.shape}')
if data_format == 'channel_last':
index = SparseHelper._get_active_map_or_index(
H=x.shape[1], returning_active_map=False)
# select the features on non-masked positions to form flatten
# features with shape (n, c)
x_flattened = x[index]
# use LayerNorm to normalize this flatten feature (n, c)
x_flattened = super().forward(x_flattened)
# generate output
x = torch.zeros_like(x, dtype=x_flattened.dtype)
x[index] = x_flattened
elif data_format == 'channel_first':
index = SparseHelper._get_active_map_or_index(
H=x.shape[2], returning_active_map=False)
x_permuted = x.permute(0, 2, 3, 1)
# select the features on non-masked positions to form flatten
# features with shape (n, c)
x_flattened = x_permuted[index]
# use LayerNorm to normalize this flatten feature (n, c)
x_flattened = super().forward(x_flattened)
# generate output
x = torch.zeros_like(x_permuted, dtype=x_flattened.dtype)
x[index] = x_flattened
x = x.permute(0, 3, 1, 2).contiguous()
else:
raise NotImplementedError
return x