Spaces:
Runtime error
Runtime error
from logging import getLogger | |
from typing import Any, Callable, List, Optional, Union | |
import numpy as np | |
import PIL | |
import torch | |
from ...schedulers import DDPMScheduler | |
from ..onnx_utils import ORT_TO_NP_TYPE, OnnxRuntimeModel | |
from ..pipeline_utils import ImagePipelineOutput | |
from . import StableDiffusionUpscalePipeline | |
logger = getLogger(__name__) | |
NUM_LATENT_CHANNELS = 4 | |
NUM_UNET_INPUT_CHANNELS = 7 | |
ORT_TO_PT_TYPE = { | |
"float16": torch.float16, | |
"float32": torch.float32, | |
} | |
def preprocess(image): | |
if isinstance(image, torch.Tensor): | |
return image | |
elif isinstance(image, PIL.Image.Image): | |
image = [image] | |
if isinstance(image[0], PIL.Image.Image): | |
w, h = image[0].size | |
w, h = (x - x % 64 for x in (w, h)) # resize to integer multiple of 32 | |
image = [np.array(i.resize((w, h)))[None, :] for i in image] | |
image = np.concatenate(image, axis=0) | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = image.transpose(0, 3, 1, 2) | |
image = 2.0 * image - 1.0 | |
image = torch.from_numpy(image) | |
elif isinstance(image[0], torch.Tensor): | |
image = torch.cat(image, dim=0) | |
return image | |
class OnnxStableDiffusionUpscalePipeline(StableDiffusionUpscalePipeline): | |
def __init__( | |
self, | |
vae: OnnxRuntimeModel, | |
text_encoder: OnnxRuntimeModel, | |
tokenizer: Any, | |
unet: OnnxRuntimeModel, | |
low_res_scheduler: DDPMScheduler, | |
scheduler: Any, | |
max_noise_level: int = 350, | |
): | |
super().__init__( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
low_res_scheduler=low_res_scheduler, | |
scheduler=scheduler, | |
safety_checker=None, | |
feature_extractor=None, | |
watermarker=None, | |
max_noise_level=max_noise_level, | |
) | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
image: Union[torch.FloatTensor, PIL.Image.Image, List[PIL.Image.Image]], | |
num_inference_steps: int = 75, | |
guidance_scale: float = 9.0, | |
noise_level: int = 20, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[np.ndarray] = None, | |
negative_prompt_embeds: Optional[np.ndarray] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: Optional[int] = 1, | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`): | |
The prompt or prompts to guide the image generation. | |
image (`np.ndarray` or `PIL.Image.Image`): | |
`Image`, or tensor representing an image batch, that will be used as the starting point for the | |
process. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. This parameter will be modulated by `strength`. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
noise_level TODO | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
if `guidance_scale` is less than `1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (Ξ·) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`np.random.RandomState`, *optional*): | |
A np.random.RandomState to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`np.ndarray`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`np.ndarray`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
When returning a tuple, the first element is a list with the generated images, and the second element is a | |
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
(nsfw) content, according to the `safety_checker`. | |
""" | |
# 1. Check inputs | |
self.check_inputs(prompt, image, noise_level, callback_steps) | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
text_embeddings = self._encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
) | |
latents_dtype = ORT_TO_PT_TYPE[str(text_embeddings.dtype)] | |
# 4. Preprocess image | |
image = preprocess(image) | |
image = image.cpu() | |
# 5. set timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 5. Add noise to image | |
noise_level = torch.tensor([noise_level], dtype=torch.long, device=device) | |
noise = torch.randn(image.shape, generator=generator, device=device, dtype=latents_dtype) | |
image = self.low_res_scheduler.add_noise(image, noise, noise_level) | |
batch_multiplier = 2 if do_classifier_free_guidance else 1 | |
image = np.concatenate([image] * batch_multiplier * num_images_per_prompt) | |
noise_level = np.concatenate([noise_level] * image.shape[0]) | |
# 6. Prepare latent variables | |
height, width = image.shape[2:] | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
NUM_LATENT_CHANNELS, | |
height, | |
width, | |
latents_dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 7. Check that sizes of image and latents match | |
num_channels_image = image.shape[1] | |
if NUM_LATENT_CHANNELS + num_channels_image != NUM_UNET_INPUT_CHANNELS: | |
raise ValueError( | |
"Incorrect configuration settings! The config of `pipeline.unet` expects" | |
f" {NUM_UNET_INPUT_CHANNELS} but received `num_channels_latents`: {NUM_LATENT_CHANNELS} +" | |
f" `num_channels_image`: {num_channels_image} " | |
f" = {NUM_LATENT_CHANNELS+num_channels_image}. Please verify the config of" | |
" `pipeline.unet` or your `image` input." | |
) | |
# 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
timestep_dtype = next( | |
(input.type for input in self.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)" | |
) | |
timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype] | |
# 9. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents | |
# concat latents, mask, masked_image_latents in the channel dimension | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
latent_model_input = np.concatenate([latent_model_input, image], axis=1) | |
# timestep to tensor | |
timestep = np.array([t], dtype=timestep_dtype) | |
# predict the noise residual | |
noise_pred = self.unet( | |
sample=latent_model_input, | |
timestep=timestep, | |
encoder_hidden_states=text_embeddings, | |
class_labels=noise_level.astype(np.int64), | |
)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step( | |
torch.from_numpy(noise_pred), t, latents, **extra_step_kwargs | |
).prev_sample | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
# 10. Post-processing | |
image = self.decode_latents(latents.float()) | |
# 11. Convert to PIL | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
if not return_dict: | |
return (image,) | |
return ImagePipelineOutput(images=image) | |
def decode_latents(self, latents): | |
latents = 1 / 0.08333 * latents | |
image = self.vae(latent_sample=latents)[0] | |
image = np.clip(image / 2 + 0.5, 0, 1) | |
image = image.transpose((0, 2, 3, 1)) | |
return image | |
def _encode_prompt( | |
self, | |
prompt: Union[str, List[str]], | |
device, | |
num_images_per_prompt: Optional[int], | |
do_classifier_free_guidance: bool, | |
negative_prompt: Optional[str], | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
): | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
if prompt_embeds is None: | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
removed_text = self.tokenizer.batch_decode( | |
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
# no positional arguments to text_encoder | |
prompt_embeds = self.text_encoder( | |
input_ids=text_input_ids.int().to(device), | |
# attention_mask=attention_mask, | |
) | |
prompt_embeds = prompt_embeds[0] | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt) | |
prompt_embeds = prompt_embeds.reshape(bs_embed * num_images_per_prompt, seq_len, -1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
max_length = text_input_ids.shape[-1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
# if hasattr(uncond_input, "attention_mask"): | |
# attention_mask = uncond_input.attention_mask.to(device) | |
# else: | |
# attention_mask = None | |
uncond_embeddings = self.text_encoder( | |
input_ids=uncond_input.input_ids.int().to(device), | |
# attention_mask=attention_mask, | |
) | |
uncond_embeddings = uncond_embeddings[0] | |
if do_classifier_free_guidance: | |
seq_len = uncond_embeddings.shape[1] | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt) | |
uncond_embeddings = uncond_embeddings.reshape(batch_size * num_images_per_prompt, seq_len, -1) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
prompt_embeds = np.concatenate([uncond_embeddings, prompt_embeds]) | |
return prompt_embeds | |