HumanSD / diffusers /pipelines /unidiffuser /pipeline_unidiffuser.py
liyy201912's picture
Upload folder using huggingface_hub
cc0dd3c
import inspect
import warnings
from dataclasses import dataclass
from typing import Callable, List, Optional, Union
import numpy as np
import PIL
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTokenizer,
CLIPVisionModelWithProjection,
GPT2Tokenizer,
)
from ...models import AutoencoderKL
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import (
PIL_INTERPOLATION,
deprecate,
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
)
from ...utils.outputs import BaseOutput
from ..pipeline_utils import DiffusionPipeline
from .modeling_text_decoder import UniDiffuserTextDecoder
from .modeling_uvit import UniDiffuserModel
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.preprocess
def preprocess(image):
warnings.warn(
"The preprocess method is deprecated and will be removed in a future version. Please"
" use VaeImageProcessor.preprocess instead",
FutureWarning,
)
if isinstance(image, torch.Tensor):
return image
elif isinstance(image, PIL.Image.Image):
image = [image]
if isinstance(image[0], PIL.Image.Image):
w, h = image[0].size
w, h = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
image = np.concatenate(image, axis=0)
image = np.array(image).astype(np.float32) / 255.0
image = image.transpose(0, 3, 1, 2)
image = 2.0 * image - 1.0
image = torch.from_numpy(image)
elif isinstance(image[0], torch.Tensor):
image = torch.cat(image, dim=0)
return image
# New BaseOutput child class for joint image-text output
@dataclass
class ImageTextPipelineOutput(BaseOutput):
"""
Output class for joint image-text pipelines.
Args:
images (`List[PIL.Image.Image]` or `np.ndarray`)
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
num_channels)`.
text (`List[str]` or `List[List[str]]`)
List of generated text strings of length `batch_size` or a list of list of strings whose outer list has
length `batch_size`.
"""
images: Optional[Union[List[PIL.Image.Image], np.ndarray]]
text: Optional[Union[List[str], List[List[str]]]]
class UniDiffuserPipeline(DiffusionPipeline):
r"""
Pipeline for a bimodal image-text [UniDiffuser](https://arxiv.org/pdf/2303.06555.pdf) model, which supports
unconditional text and image generation, text-conditioned image generation, image-conditioned text generation, and
joint image-text generation.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. This
is part of the UniDiffuser image representation, along with the CLIP vision encoding.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Similar to Stable Diffusion, UniDiffuser uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel) to encode text
prompts.
image_encoder ([`CLIPVisionModel`]):
UniDiffuser uses the vision portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModel) to encode
images as part of its image representation, along with the VAE latent representation.
image_processor ([`CLIPImageProcessor`]):
CLIP image processor of class
[CLIPImageProcessor](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPImageProcessor),
used to preprocess the image before CLIP encoding it with `image_encoder`.
clip_tokenizer ([`CLIPTokenizer`]):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTokenizer) which
is used to tokenizer a prompt before encoding it with `text_encoder`.
text_decoder ([`UniDiffuserTextDecoder`]):
Frozen text decoder. This is a GPT-style model which is used to generate text from the UniDiffuser
embedding.
text_tokenizer ([`GPT2Tokenizer`]):
Tokenizer of class
[GPT2Tokenizer](https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2Tokenizer) which
is used along with the `text_decoder` to decode text for text generation.
unet ([`UniDiffuserModel`]):
UniDiffuser uses a [U-ViT](https://github.com/baofff/U-ViT) model architecture, which is similar to a
[`Transformer2DModel`] with U-Net-style skip connections between transformer layers.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image and/or text latents. The
original UniDiffuser paper uses the [`DPMSolverMultistepScheduler`] scheduler.
"""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
image_encoder: CLIPVisionModelWithProjection,
image_processor: CLIPImageProcessor,
clip_tokenizer: CLIPTokenizer,
text_decoder: UniDiffuserTextDecoder,
text_tokenizer: GPT2Tokenizer,
unet: UniDiffuserModel,
scheduler: KarrasDiffusionSchedulers,
):
super().__init__()
if text_encoder.config.hidden_size != text_decoder.prefix_inner_dim:
raise ValueError(
f"The text encoder hidden size and text decoder prefix inner dim must be the same, but"
f" `text_encoder.config.hidden_size`: {text_encoder.config.hidden_size} and `text_decoder.prefix_inner_dim`: {text_decoder.prefix_inner_dim}"
)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
image_encoder=image_encoder,
image_processor=image_processor,
clip_tokenizer=clip_tokenizer,
text_decoder=text_decoder,
text_tokenizer=text_tokenizer,
unet=unet,
scheduler=scheduler,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.num_channels_latents = vae.config.latent_channels
self.text_encoder_seq_len = text_encoder.config.max_position_embeddings
self.text_encoder_hidden_size = text_encoder.config.hidden_size
self.image_encoder_projection_dim = image_encoder.config.projection_dim
self.unet_resolution = unet.config.sample_size
self.text_intermediate_dim = self.text_encoder_hidden_size
if self.text_decoder.prefix_hidden_dim is not None:
self.text_intermediate_dim = self.text_decoder.prefix_hidden_dim
self.mode = None
# TODO: handle safety checking?
self.safety_checker = None
# Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_model_cpu_offload
# Add self.image_encoder, self.text_decoder to cpu_offloaded_models list
def enable_model_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
"""
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
device = torch.device(f"cuda:{gpu_id}")
if self.device.type != "cpu":
self.to("cpu", silence_dtype_warnings=True)
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
hook = None
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae, self.image_encoder, self.text_decoder]:
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
if self.safety_checker is not None:
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)
# We'll offload the last model manually.
self.final_offload_hook = hook
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (Ξ·) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to Ξ· in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def _infer_mode(self, prompt, prompt_embeds, image, latents, prompt_latents, vae_latents, clip_latents):
r"""
Infer the generation task ('mode') from the inputs to `__call__`. If the mode has been manually set, the set
mode will be used.
"""
prompt_available = (prompt is not None) or (prompt_embeds is not None)
image_available = image is not None
input_available = prompt_available or image_available
prompt_latents_available = prompt_latents is not None
vae_latents_available = vae_latents is not None
clip_latents_available = clip_latents is not None
full_latents_available = latents is not None
image_latents_available = vae_latents_available and clip_latents_available
all_indv_latents_available = prompt_latents_available and image_latents_available
if self.mode is not None:
# Preferentially use the mode set by the user
mode = self.mode
elif prompt_available:
mode = "text2img"
elif image_available:
mode = "img2text"
else:
# Neither prompt nor image supplied, infer based on availability of latents
if full_latents_available or all_indv_latents_available:
mode = "joint"
elif prompt_latents_available:
mode = "text"
elif image_latents_available:
mode = "img"
else:
# No inputs or latents available
mode = "joint"
# Give warnings for ambiguous cases
if self.mode is None and prompt_available and image_available:
logger.warning(
f"You have supplied both a text prompt and image to the pipeline and mode has not been set manually,"
f" defaulting to mode '{mode}'."
)
if self.mode is None and not input_available:
if vae_latents_available != clip_latents_available:
# Exactly one of vae_latents and clip_latents is supplied
logger.warning(
f"You have supplied exactly one of `vae_latents` and `clip_latents`, whereas either both or none"
f" are expected to be supplied. Defaulting to mode '{mode}'."
)
elif not prompt_latents_available and not vae_latents_available and not clip_latents_available:
# No inputs or latents supplied
logger.warning(
f"No inputs or latents have been supplied, and mode has not been manually set,"
f" defaulting to mode '{mode}'."
)
return mode
# Functions to manually set the mode
def set_text_mode(self):
r"""Manually set the generation mode to unconditional ("marginal") text generation."""
self.mode = "text"
def set_image_mode(self):
r"""Manually set the generation mode to unconditional ("marginal") image generation."""
self.mode = "img"
def set_text_to_image_mode(self):
r"""Manually set the generation mode to text-conditioned image generation."""
self.mode = "text2img"
def set_image_to_text_mode(self):
r"""Manually set the generation mode to image-conditioned text generation."""
self.mode = "img2text"
def set_joint_mode(self):
r"""Manually set the generation mode to unconditional joint image-text generation."""
self.mode = "joint"
def reset_mode(self):
r"""Removes a manually set mode; after calling this, the pipeline will infer the mode from inputs."""
self.mode = None
def _infer_batch_size(
self,
mode,
prompt,
prompt_embeds,
image,
num_images_per_prompt,
num_prompts_per_image,
latents,
prompt_latents,
vae_latents,
clip_latents,
):
r"""Infers the batch size and multiplier depending on mode and supplied arguments to `__call__`."""
if num_images_per_prompt is None:
num_images_per_prompt = 1
if num_prompts_per_image is None:
num_prompts_per_image = 1
assert num_images_per_prompt > 0, "num_images_per_prompt must be a positive integer"
assert num_prompts_per_image > 0, "num_prompts_per_image must be a positive integer"
if mode in ["text2img"]:
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
# Either prompt or prompt_embeds must be present for text2img.
batch_size = prompt_embeds.shape[0]
multiplier = num_images_per_prompt
elif mode in ["img2text"]:
if isinstance(image, PIL.Image.Image):
batch_size = 1
else:
# Image must be available and type either PIL.Image.Image or torch.FloatTensor.
# Not currently supporting something like image_embeds.
batch_size = image.shape[0]
multiplier = num_prompts_per_image
elif mode in ["img"]:
if vae_latents is not None:
batch_size = vae_latents.shape[0]
elif clip_latents is not None:
batch_size = clip_latents.shape[0]
else:
batch_size = 1
multiplier = num_images_per_prompt
elif mode in ["text"]:
if prompt_latents is not None:
batch_size = prompt_latents.shape[0]
else:
batch_size = 1
multiplier = num_prompts_per_image
elif mode in ["joint"]:
if latents is not None:
batch_size = latents.shape[0]
elif prompt_latents is not None:
batch_size = prompt_latents.shape[0]
elif vae_latents is not None:
batch_size = vae_latents.shape[0]
elif clip_latents is not None:
batch_size = clip_latents.shape[0]
else:
batch_size = 1
if num_images_per_prompt == num_prompts_per_image:
multiplier = num_images_per_prompt
else:
multiplier = min(num_images_per_prompt, num_prompts_per_image)
logger.warning(
f"You are using mode `{mode}` and `num_images_per_prompt`: {num_images_per_prompt} and"
f" num_prompts_per_image: {num_prompts_per_image} are not equal. Using batch size equal to"
f" `min(num_images_per_prompt, num_prompts_per_image) = {batch_size}."
)
return batch_size, multiplier
# Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
# self.tokenizer => self.clip_tokenizer
def _encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
"""
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
text_inputs = self.clip_tokenizer(
prompt,
padding="max_length",
max_length=self.clip_tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.clip_tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.clip_tokenizer.batch_decode(
untruncated_ids[:, self.clip_tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.clip_tokenizer.model_max_length} tokens: {removed_text}"
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
prompt_embeds = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
)
prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = prompt_embeds.shape[1]
uncond_input = self.clip_tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
return prompt_embeds
# Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_instruct_pix2pix.StableDiffusionInstructPix2PixPipeline.prepare_image_latents
# Add num_prompts_per_image argument, sample from autoencoder moment distribution
def encode_image_vae_latents(
self,
image,
batch_size,
num_prompts_per_image,
dtype,
device,
do_classifier_free_guidance,
generator=None,
):
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
raise ValueError(
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
)
image = image.to(device=device, dtype=dtype)
batch_size = batch_size * num_prompts_per_image
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if isinstance(generator, list):
image_latents = [
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator=generator[i])
* self.vae.config.scaling_factor
for i in range(batch_size)
]
image_latents = torch.cat(image_latents, dim=0)
else:
image_latents = self.vae.encode(image).latent_dist.sample(generator=generator)
# Scale image_latents by the VAE's scaling factor
image_latents = image_latents * self.vae.config.scaling_factor
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
# expand image_latents for batch_size
deprecation_message = (
f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial"
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
" your script to pass as many initial images as text prompts to suppress this warning."
)
deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
additional_image_per_prompt = batch_size // image_latents.shape[0]
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
)
else:
image_latents = torch.cat([image_latents], dim=0)
if do_classifier_free_guidance:
uncond_image_latents = torch.zeros_like(image_latents)
image_latents = torch.cat([image_latents, image_latents, uncond_image_latents], dim=0)
return image_latents
def encode_image_clip_latents(
self,
image,
batch_size,
num_prompts_per_image,
dtype,
device,
generator=None,
):
# Map image to CLIP embedding.
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
raise ValueError(
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
)
preprocessed_image = self.image_processor.preprocess(
image,
return_tensors="pt",
)
preprocessed_image = preprocessed_image.to(device=device, dtype=dtype)
batch_size = batch_size * num_prompts_per_image
if isinstance(generator, list):
image_latents = [
self.image_encoder(**preprocessed_image[i : i + 1]).image_embeds for i in range(batch_size)
]
image_latents = torch.cat(image_latents, dim=0)
else:
image_latents = self.image_encoder(**preprocessed_image).image_embeds
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
# expand image_latents for batch_size
deprecation_message = (
f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial"
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
" your script to pass as many initial images as text prompts to suppress this warning."
)
deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
additional_image_per_prompt = batch_size // image_latents.shape[0]
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
)
else:
image_latents = torch.cat([image_latents], dim=0)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
return image_latents
# Note that the CLIP latents are not decoded for image generation.
# Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
# Rename: decode_latents -> decode_image_latents
def decode_image_latents(self, latents):
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents, return_dict=False)[0]
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
def prepare_text_latents(
self, batch_size, num_images_per_prompt, seq_len, hidden_size, dtype, device, generator, latents=None
):
# Prepare latents for the CLIP embedded prompt.
shape = (batch_size * num_images_per_prompt, seq_len, hidden_size)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
# latents is assumed to have shace (B, L, D)
latents = latents.repeat(num_images_per_prompt, 1, 1)
latents = latents.to(device=device, dtype=dtype)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
# Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
# Rename prepare_latents -> prepare_image_vae_latents and add num_prompts_per_image argument.
def prepare_image_vae_latents(
self,
batch_size,
num_prompts_per_image,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
):
shape = (
batch_size * num_prompts_per_image,
num_channels_latents,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
# latents is assumed to have shape (B, C, H, W)
latents = latents.repeat(num_prompts_per_image, 1, 1, 1)
latents = latents.to(device=device, dtype=dtype)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
def prepare_image_clip_latents(
self, batch_size, num_prompts_per_image, clip_img_dim, dtype, device, generator, latents=None
):
# Prepare latents for the CLIP embedded image.
shape = (batch_size * num_prompts_per_image, 1, clip_img_dim)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
# latents is assumed to have shape (B, L, D)
latents = latents.repeat(num_prompts_per_image, 1, 1)
latents = latents.to(device=device, dtype=dtype)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
def _split(self, x, height, width):
r"""
Splits a flattened embedding x of shape (B, C * H * W + clip_img_dim) into two tensors of shape (B, C, H, W)
and (B, 1, clip_img_dim)
"""
batch_size = x.shape[0]
latent_height = height // self.vae_scale_factor
latent_width = width // self.vae_scale_factor
img_vae_dim = self.num_channels_latents * latent_height * latent_width
img_vae, img_clip = x.split([img_vae_dim, self.image_encoder_projection_dim], dim=1)
img_vae = torch.reshape(img_vae, (batch_size, self.num_channels_latents, latent_height, latent_width))
img_clip = torch.reshape(img_clip, (batch_size, 1, self.image_encoder_projection_dim))
return img_vae, img_clip
def _combine(self, img_vae, img_clip):
r"""
Combines a latent iamge img_vae of shape (B, C, H, W) and a CLIP-embedded image img_clip of shape (B, 1,
clip_img_dim) into a single tensor of shape (B, C * H * W + clip_img_dim).
"""
img_vae = torch.reshape(img_vae, (img_vae.shape[0], -1))
img_clip = torch.reshape(img_clip, (img_clip.shape[0], -1))
return torch.concat([img_vae, img_clip], dim=-1)
def _split_joint(self, x, height, width):
r"""
Splits a flattened embedding x of shape (B, C * H * W + clip_img_dim + text_seq_len * text_dim] into (img_vae,
img_clip, text) where img_vae is of shape (B, C, H, W), img_clip is of shape (B, 1, clip_img_dim), and text is
of shape (B, text_seq_len, text_dim).
"""
batch_size = x.shape[0]
latent_height = height // self.vae_scale_factor
latent_width = width // self.vae_scale_factor
img_vae_dim = self.num_channels_latents * latent_height * latent_width
text_dim = self.text_encoder_seq_len * self.text_intermediate_dim
img_vae, img_clip, text = x.split([img_vae_dim, self.image_encoder_projection_dim, text_dim], dim=1)
img_vae = torch.reshape(img_vae, (batch_size, self.num_channels_latents, latent_height, latent_width))
img_clip = torch.reshape(img_clip, (batch_size, 1, self.image_encoder_projection_dim))
text = torch.reshape(text, (batch_size, self.text_encoder_seq_len, self.text_intermediate_dim))
return img_vae, img_clip, text
def _combine_joint(self, img_vae, img_clip, text):
r"""
Combines a latent image img_vae of shape (B, C, H, W), a CLIP-embedded image img_clip of shape (B, L_img,
clip_img_dim), and a text embedding text of shape (B, L_text, text_dim) into a single embedding x of shape (B,
C * H * W + L_img * clip_img_dim + L_text * text_dim).
"""
img_vae = torch.reshape(img_vae, (img_vae.shape[0], -1))
img_clip = torch.reshape(img_clip, (img_clip.shape[0], -1))
text = torch.reshape(text, (text.shape[0], -1))
return torch.concat([img_vae, img_clip, text], dim=-1)
def _get_noise_pred(
self,
mode,
latents,
t,
prompt_embeds,
img_vae,
img_clip,
max_timestep,
data_type,
guidance_scale,
generator,
device,
height,
width,
):
r"""
Gets the noise prediction using the `unet` and performs classifier-free guidance, if necessary.
"""
if mode == "joint":
# Joint text-image generation
img_vae_latents, img_clip_latents, text_latents = self._split_joint(latents, height, width)
img_vae_out, img_clip_out, text_out = self.unet(
img_vae_latents, img_clip_latents, text_latents, timestep_img=t, timestep_text=t, data_type=data_type
)
x_out = self._combine_joint(img_vae_out, img_clip_out, text_out)
if guidance_scale <= 1.0:
return x_out
# Classifier-free guidance
img_vae_T = randn_tensor(img_vae.shape, generator=generator, device=device, dtype=img_vae.dtype)
img_clip_T = randn_tensor(img_clip.shape, generator=generator, device=device, dtype=img_clip.dtype)
text_T = randn_tensor(prompt_embeds.shape, generator=generator, device=device, dtype=prompt_embeds.dtype)
_, _, text_out_uncond = self.unet(
img_vae_T, img_clip_T, text_latents, timestep_img=max_timestep, timestep_text=t, data_type=data_type
)
img_vae_out_uncond, img_clip_out_uncond, _ = self.unet(
img_vae_latents,
img_clip_latents,
text_T,
timestep_img=t,
timestep_text=max_timestep,
data_type=data_type,
)
x_out_uncond = self._combine_joint(img_vae_out_uncond, img_clip_out_uncond, text_out_uncond)
return guidance_scale * x_out + (1.0 - guidance_scale) * x_out_uncond
elif mode == "text2img":
# Text-conditioned image generation
img_vae_latents, img_clip_latents = self._split(latents, height, width)
img_vae_out, img_clip_out, text_out = self.unet(
img_vae_latents, img_clip_latents, prompt_embeds, timestep_img=t, timestep_text=0, data_type=data_type
)
img_out = self._combine(img_vae_out, img_clip_out)
if guidance_scale <= 1.0:
return img_out
# Classifier-free guidance
text_T = randn_tensor(prompt_embeds.shape, generator=generator, device=device, dtype=prompt_embeds.dtype)
img_vae_out_uncond, img_clip_out_uncond, text_out_uncond = self.unet(
img_vae_latents,
img_clip_latents,
text_T,
timestep_img=t,
timestep_text=max_timestep,
data_type=data_type,
)
img_out_uncond = self._combine(img_vae_out_uncond, img_clip_out_uncond)
return guidance_scale * img_out + (1.0 - guidance_scale) * img_out_uncond
elif mode == "img2text":
# Image-conditioned text generation
img_vae_out, img_clip_out, text_out = self.unet(
img_vae, img_clip, latents, timestep_img=0, timestep_text=t, data_type=data_type
)
if guidance_scale <= 1.0:
return text_out
# Classifier-free guidance
img_vae_T = randn_tensor(img_vae.shape, generator=generator, device=device, dtype=img_vae.dtype)
img_clip_T = randn_tensor(img_clip.shape, generator=generator, device=device, dtype=img_clip.dtype)
img_vae_out_uncond, img_clip_out_uncond, text_out_uncond = self.unet(
img_vae_T, img_clip_T, latents, timestep_img=max_timestep, timestep_text=t, data_type=data_type
)
return guidance_scale * text_out + (1.0 - guidance_scale) * text_out_uncond
elif mode == "text":
# Unconditional ("marginal") text generation (no CFG)
img_vae_out, img_clip_out, text_out = self.unet(
img_vae, img_clip, latents, timestep_img=max_timestep, timestep_text=t, data_type=data_type
)
return text_out
elif mode == "img":
# Unconditional ("marginal") image generation (no CFG)
img_vae_latents, img_clip_latents = self._split(latents, height, width)
img_vae_out, img_clip_out, text_out = self.unet(
img_vae_latents,
img_clip_latents,
prompt_embeds,
timestep_img=t,
timestep_text=max_timestep,
data_type=data_type,
)
img_out = self._combine(img_vae_out, img_clip_out)
return img_out
def check_latents_shape(self, latents_name, latents, expected_shape):
latents_shape = latents.shape
expected_num_dims = len(expected_shape) + 1 # expected dimensions plus the batch dimension
expected_shape_str = ", ".join(str(dim) for dim in expected_shape)
if len(latents_shape) != expected_num_dims:
raise ValueError(
f"`{latents_name}` should have shape (batch_size, {expected_shape_str}), but the current shape"
f" {latents_shape} has {len(latents_shape)} dimensions."
)
for i in range(1, expected_num_dims):
if latents_shape[i] != expected_shape[i - 1]:
raise ValueError(
f"`{latents_name}` should have shape (batch_size, {expected_shape_str}), but the current shape"
f" {latents_shape} has {latents_shape[i]} != {expected_shape[i - 1]} at dimension {i}."
)
def check_inputs(
self,
mode,
prompt,
image,
height,
width,
callback_steps,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
latents=None,
prompt_latents=None,
vae_latents=None,
clip_latents=None,
):
# Check inputs before running the generative process.
if height % self.vae_scale_factor != 0 or width % self.vae_scale_factor != 0:
raise ValueError(
f"`height` and `width` have to be divisible by {self.vae_scale_factor} but are {height} and {width}."
)
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if mode == "text2img":
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
if mode == "img2text":
if image is None:
raise ValueError("`img2text` mode requires an image to be provided.")
# Check provided latents
latent_height = height // self.vae_scale_factor
latent_width = width // self.vae_scale_factor
full_latents_available = latents is not None
prompt_latents_available = prompt_latents is not None
vae_latents_available = vae_latents is not None
clip_latents_available = clip_latents is not None
if full_latents_available:
individual_latents_available = (
prompt_latents is not None or vae_latents is not None or clip_latents is not None
)
if individual_latents_available:
logger.warning(
"You have supplied both `latents` and at least one of `prompt_latents`, `vae_latents`, and"
" `clip_latents`. The value of `latents` will override the value of any individually supplied latents."
)
# Check shape of full latents
img_vae_dim = self.num_channels_latents * latent_height * latent_width
text_dim = self.text_encoder_seq_len * self.text_encoder_hidden_size
latents_dim = img_vae_dim + self.image_encoder_projection_dim + text_dim
latents_expected_shape = (latents_dim,)
self.check_latents_shape("latents", latents, latents_expected_shape)
# Check individual latent shapes, if present
if prompt_latents_available:
prompt_latents_expected_shape = (self.text_encoder_seq_len, self.text_encoder_hidden_size)
self.check_latents_shape("prompt_latents", prompt_latents, prompt_latents_expected_shape)
if vae_latents_available:
vae_latents_expected_shape = (self.num_channels_latents, latent_height, latent_width)
self.check_latents_shape("vae_latents", vae_latents, vae_latents_expected_shape)
if clip_latents_available:
clip_latents_expected_shape = (1, self.image_encoder_projection_dim)
self.check_latents_shape("clip_latents", clip_latents, clip_latents_expected_shape)
if mode in ["text2img", "img"] and vae_latents_available and clip_latents_available:
if vae_latents.shape[0] != clip_latents.shape[0]:
raise ValueError(
f"Both `vae_latents` and `clip_latents` are supplied, but their batch dimensions are not equal:"
f" {vae_latents.shape[0]} != {clip_latents.shape[0]}."
)
if mode == "joint" and prompt_latents_available and vae_latents_available and clip_latents_available:
if prompt_latents.shape[0] != vae_latents.shape[0] or prompt_latents.shape[0] != clip_latents.shape[0]:
raise ValueError(
f"All of `prompt_latents`, `vae_latents`, and `clip_latents` are supplied, but their batch"
f" dimensions are not equal: {prompt_latents.shape[0]} != {vae_latents.shape[0]}"
f" != {clip_latents.shape[0]}."
)
@torch.no_grad()
def __call__(
self,
prompt: Optional[Union[str, List[str]]] = None,
image: Optional[Union[torch.FloatTensor, PIL.Image.Image]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
data_type: Optional[int] = 1,
num_inference_steps: int = 50,
guidance_scale: float = 8.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
num_prompts_per_image: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_latents: Optional[torch.FloatTensor] = None,
vae_latents: Optional[torch.FloatTensor] = None,
clip_latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`
instead. Required for text-conditioned image generation (`text2img`) mode.
image (`torch.FloatTensor` or `PIL.Image.Image`, *optional*):
`Image`, or tensor representing an image batch. Required for image-conditioned text generation
(`img2text`) mode.
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The width in pixels of the generated image.
data_type (`int`, *optional*, defaults to 1):
The data type (either 0 or 1). Only used if you are loading a checkpoint which supports a data type
embedding; this is added for compatibility with the UniDiffuser-v1 checkpoint.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 8.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality. Note that the original [UniDiffuser
paper](https://arxiv.org/pdf/2303.06555.pdf) uses a different definition of the guidance scale `w'`,
which satisfies `w = w' + 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`). Used in text-conditioned image generation (`text2img`) mode.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt. Used in `text2img` (text-conditioned image generation) and
`img` mode. If the mode is joint and both `num_images_per_prompt` and `num_prompts_per_image` are
supplied, `min(num_images_per_prompt, num_prompts_per_image)` samples will be generated.
num_prompts_per_image (`int`, *optional*, defaults to 1):
The number of prompts to generate per image. Used in `img2text` (image-conditioned text generation) and
`text` mode. If the mode is joint and both `num_images_per_prompt` and `num_prompts_per_image` are
supplied, `min(num_images_per_prompt, num_prompts_per_image)` samples will be generated.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (Ξ·) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for joint
image-text generation. Can be used to tweak the same generation with different prompts. If not
provided, a latents tensor will be generated by sampling using the supplied random `generator`. Note
that this is assumed to be a full set of VAE, CLIP, and text latents, if supplied, this will override
the value of `prompt_latents`, `vae_latents`, and `clip_latents`.
prompt_latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for text
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will be generated by sampling using the supplied random `generator`.
vae_latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will be generated by sampling using the supplied random `generator`.
clip_latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will be generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument. Used in text-conditioned
image generation (`text2img`) mode.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument. Used in text-conditioned image generation (`text2img`) mode.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.unidiffuser.ImageTextPipelineOutput`] instead of a plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
Returns:
[`~pipelines.unidiffuser.ImageTextPipelineOutput`] or `tuple`:
[`pipelines.unidiffuser.ImageTextPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When
returning a tuple, the first element is a list with the generated images, and the second element is a list
of generated texts.
"""
# 0. Default height and width to unet
height = height or self.unet_resolution * self.vae_scale_factor
width = width or self.unet_resolution * self.vae_scale_factor
# 1. Check inputs
# Recalculate mode for each call to the pipeline.
mode = self._infer_mode(prompt, prompt_embeds, image, latents, prompt_latents, vae_latents, clip_latents)
self.check_inputs(
mode,
prompt,
image,
height,
width,
callback_steps,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
latents,
prompt_latents,
vae_latents,
clip_latents,
)
# 2. Define call parameters
batch_size, multiplier = self._infer_batch_size(
mode,
prompt,
prompt_embeds,
image,
num_images_per_prompt,
num_prompts_per_image,
latents,
prompt_latents,
vae_latents,
clip_latents,
)
device = self._execution_device
reduce_text_emb_dim = self.text_intermediate_dim < self.text_encoder_hidden_size or self.mode != "text2img"
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
# Note that this differs from the formulation in the unidiffusers paper!
# do_classifier_free_guidance = guidance_scale > 1.0
# check if scheduler is in sigmas space
# scheduler_is_in_sigma_space = hasattr(self.scheduler, "sigmas")
# 3. Encode input prompt, if available; otherwise prepare text latents
if latents is not None:
# Overwrite individual latents
vae_latents, clip_latents, prompt_latents = self._split_joint(latents, height, width)
if mode in ["text2img"]:
# 3.1. Encode input prompt, if available
assert prompt is not None or prompt_embeds is not None
prompt_embeds = self._encode_prompt(
prompt=prompt,
device=device,
num_images_per_prompt=multiplier,
do_classifier_free_guidance=False, # don't support standard classifier-free guidance for now
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
else:
# 3.2. Prepare text latent variables, if input not available
prompt_embeds = self.prepare_text_latents(
batch_size=batch_size,
num_images_per_prompt=multiplier,
seq_len=self.text_encoder_seq_len,
hidden_size=self.text_encoder_hidden_size,
dtype=self.text_encoder.dtype, # Should work with both full precision and mixed precision
device=device,
generator=generator,
latents=prompt_latents,
)
if reduce_text_emb_dim:
prompt_embeds = self.text_decoder.encode(prompt_embeds)
# 4. Encode image, if available; otherwise prepare image latents
if mode in ["img2text"]:
# 4.1. Encode images, if available
assert image is not None, "`img2text` requires a conditioning image"
# Encode image using VAE
image_vae = preprocess(image)
height, width = image_vae.shape[-2:]
image_vae_latents = self.encode_image_vae_latents(
image=image_vae,
batch_size=batch_size,
num_prompts_per_image=multiplier,
dtype=prompt_embeds.dtype,
device=device,
do_classifier_free_guidance=False, # Copied from InstructPix2Pix, don't use their version of CFG
generator=generator,
)
# Encode image using CLIP
image_clip_latents = self.encode_image_clip_latents(
image=image,
batch_size=batch_size,
num_prompts_per_image=multiplier,
dtype=prompt_embeds.dtype,
device=device,
generator=generator,
)
# (batch_size, clip_hidden_size) => (batch_size, 1, clip_hidden_size)
image_clip_latents = image_clip_latents.unsqueeze(1)
else:
# 4.2. Prepare image latent variables, if input not available
# Prepare image VAE latents in latent space
image_vae_latents = self.prepare_image_vae_latents(
batch_size=batch_size,
num_prompts_per_image=multiplier,
num_channels_latents=self.num_channels_latents,
height=height,
width=width,
dtype=prompt_embeds.dtype,
device=device,
generator=generator,
latents=vae_latents,
)
# Prepare image CLIP latents
image_clip_latents = self.prepare_image_clip_latents(
batch_size=batch_size,
num_prompts_per_image=multiplier,
clip_img_dim=self.image_encoder_projection_dim,
dtype=prompt_embeds.dtype,
device=device,
generator=generator,
latents=clip_latents,
)
# 5. Set timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# max_timestep = timesteps[0]
max_timestep = self.scheduler.config.num_train_timesteps
# 6. Prepare latent variables
if mode == "joint":
latents = self._combine_joint(image_vae_latents, image_clip_latents, prompt_embeds)
elif mode in ["text2img", "img"]:
latents = self._combine(image_vae_latents, image_clip_latents)
elif mode in ["img2text", "text"]:
latents = prompt_embeds
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
logger.debug(f"Scheduler extra step kwargs: {extra_step_kwargs}")
# 8. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# predict the noise residual
# Also applies classifier-free guidance as described in the UniDiffuser paper
noise_pred = self._get_noise_pred(
mode,
latents,
t,
prompt_embeds,
image_vae_latents,
image_clip_latents,
max_timestep,
data_type,
guidance_scale,
generator,
device,
height,
width,
)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# 9. Post-processing
gen_image = None
gen_text = None
if mode == "joint":
image_vae_latents, image_clip_latents, text_latents = self._split_joint(latents, height, width)
# Map latent VAE image back to pixel space
gen_image = self.decode_image_latents(image_vae_latents)
# Generate text using the text decoder
output_token_list, seq_lengths = self.text_decoder.generate_captions(
text_latents, self.text_tokenizer.eos_token_id, device=device
)
output_list = output_token_list.cpu().numpy()
gen_text = [
self.text_tokenizer.decode(output[: int(length)], skip_special_tokens=True)
for output, length in zip(output_list, seq_lengths)
]
elif mode in ["text2img", "img"]:
image_vae_latents, image_clip_latents = self._split(latents, height, width)
gen_image = self.decode_image_latents(image_vae_latents)
elif mode in ["img2text", "text"]:
text_latents = latents
output_token_list, seq_lengths = self.text_decoder.generate_captions(
text_latents, self.text_tokenizer.eos_token_id, device=device
)
output_list = output_token_list.cpu().numpy()
gen_text = [
self.text_tokenizer.decode(output[: int(length)], skip_special_tokens=True)
for output, length in zip(output_list, seq_lengths)
]
# 10. Convert to PIL
if output_type == "pil" and gen_image is not None:
gen_image = self.numpy_to_pil(gen_image)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (gen_image, gen_text)
return ImageTextPipelineOutput(images=gen_image, text=gen_text)