HumanSD / mmpose /apis /webcam /nodes /visualizer_nodes /sunglasses_effect_node.py
liyy201912's picture
Upload folder using huggingface_hub
cc0dd3c
# Copyright (c) OpenMMLab. All rights reserved.
from itertools import groupby
from typing import Dict, List, Optional, Union
import cv2
import numpy as np
from ...utils import get_eye_keypoint_ids, load_image_from_disk_or_url
from ..base_visualizer_node import BaseVisualizerNode
from ..registry import NODES
@NODES.register_module()
class SunglassesEffectNode(BaseVisualizerNode):
"""Apply sunglasses effect (draw sunglasses at the facial area)to the
objects with eye keypoints in the frame.
Args:
name (str): The node name (also thread name)
input_buffer (str): The name of the input buffer
output_buffer (str|list): The name(s) of the output buffer(s)
enable_key (str|int, optional): Set a hot-key to toggle enable/disable
of the node. If an int value is given, it will be treated as an
ascii code of a key. Please note:
1. If enable_key is set, the bypass method need to be
overridden to define the node behavior when disabled
2. Some hot-key has been use for particular use. For example:
'q', 'Q' and 27 are used for quit
Default: ``None``
enable (bool): Default enable/disable status. Default: ``True``.
kpt_thr (float): The score threshold of valid keypoints. Default: 0.5
resource_img_path (str, optional): The resource image path or url.
The image should be a pair of sunglasses with white background.
If not specified, the url of a default image will be used. See
``SunglassesNode.default_resource_img_path``. Default: ``None``
Example::
>>> cfg = dict(
... type='SunglassesEffectNode',
... name='sunglasses',
... enable_key='s',
... enable=False,
... input_buffer='vis',
... output_buffer='vis_sunglasses')
>>> from mmpose.apis.webcam.nodes import NODES
>>> node = NODES.build(cfg)
"""
# The image attributes to:
# "https://www.vecteezy.com/vector-art/1932353-summer-sunglasses-
# accessory-isolated-icon" by Vecteezy
default_resource_img_path = (
'https://user-images.githubusercontent.com/15977946/'
'170850839-acc59e26-c6b3-48c9-a9ec-87556edb99ed.jpg')
def __init__(self,
name: str,
input_buffer: str,
output_buffer: Union[str, List[str]],
enable_key: Optional[Union[str, int]] = None,
enable: bool = True,
kpt_thr: float = 0.5,
resource_img_path: Optional[str] = None):
super().__init__(
name=name,
input_buffer=input_buffer,
output_buffer=output_buffer,
enable_key=enable_key,
enable=enable)
if resource_img_path is None:
resource_img_path = self.default_resource_img_path
self.resource_img = load_image_from_disk_or_url(resource_img_path)
self.kpt_thr = kpt_thr
def draw(self, input_msg):
canvas = input_msg.get_image()
objects = input_msg.get_objects(lambda x: 'keypoints' in x)
for dataset_meta, group in groupby(objects,
lambda x: x['dataset_meta']):
left_eye_index, right_eye_index = get_eye_keypoint_ids(
dataset_meta)
canvas = self.apply_sunglasses_effect(canvas, group,
left_eye_index,
right_eye_index)
return canvas
def apply_sunglasses_effect(self, canvas: np.ndarray, objects: List[Dict],
left_eye_index: int,
right_eye_index: int) -> np.ndarray:
"""Apply sunglasses effect.
Args:
canvas (np.ndarray): The image to apply the effect
objects (list[dict]): The object list with keypoints
- "keypoints" ([K,3]): keypoints in [x, y, score]
left_eye_index (int): Keypoint index of the left eye
right_eye_index (int): Keypoint index of the right eye
Returns:
np.ndarray: Processed image
"""
hm, wm = self.resource_img.shape[:2]
# anchor points in the sunglasses image
pts_src = np.array([[0.3 * wm, 0.3 * hm], [0.3 * wm, 0.7 * hm],
[0.7 * wm, 0.3 * hm], [0.7 * wm, 0.7 * hm]],
dtype=np.float32)
for obj in objects:
kpts = obj['keypoints']
kpt_scores = obj['keypoint_scores']
if kpt_scores[left_eye_index] < self.kpt_thr or kpt_scores[
right_eye_index] < self.kpt_thr:
continue
kpt_leye = kpts[left_eye_index, :2]
kpt_reye = kpts[right_eye_index, :2]
# orthogonal vector to the left-to-right eyes
vo = 0.5 * (kpt_reye - kpt_leye)[::-1] * [-1, 1]
# anchor points in the image by eye positions
pts_tar = np.vstack(
[kpt_reye + vo, kpt_reye - vo, kpt_leye + vo, kpt_leye - vo])
h_mat, _ = cv2.findHomography(pts_src, pts_tar)
patch = cv2.warpPerspective(
self.resource_img,
h_mat,
dsize=(canvas.shape[1], canvas.shape[0]),
borderValue=(255, 255, 255))
# mask the white background area in the patch with a threshold 200
mask = cv2.cvtColor(patch, cv2.COLOR_BGR2GRAY)
mask = (mask < 200).astype(np.uint8)
canvas = cv2.copyTo(patch, mask, canvas)
return canvas