HumanSD / mmpose /codecs /utils /instance_property.py
liyy201912's picture
Upload folder using huggingface_hub
cc0dd3c
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional
import numpy as np
def get_instance_root(keypoints: np.ndarray,
keypoints_visible: Optional[np.ndarray] = None,
root_type: str = 'kpt_center') -> np.ndarray:
"""Calculate the coordinates and visibility of instance roots.
Args:
keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D)
keypoints_visible (np.ndarray): Keypoint visibilities in shape
(N, K)
root_type (str): Calculation of instance roots which should
be one of the following options:
- ``'kpt_center'``: The roots' coordinates are the mean
coordinates of visible keypoints
- ``'bbox_center'``: The roots' are the center of bounding
boxes outlined by visible keypoints
Defaults to ``'kpt_center'``
Returns:
tuple
- roots_coordinate(np.ndarray): Coordinates of instance roots in
shape [N, D]
- roots_visible(np.ndarray): Visibility of instance roots in
shape [N]
"""
roots_coordinate = np.zeros((keypoints.shape[0], 2), dtype=np.float32)
roots_visible = np.ones((keypoints.shape[0]), dtype=np.float32) * 2
for i in range(keypoints.shape[0]):
# collect visible keypoints
if keypoints_visible is not None:
visible_keypoints = keypoints[i][keypoints_visible[i] > 0]
else:
visible_keypoints = keypoints[i]
if visible_keypoints.size == 0:
roots_visible[i] = 0
continue
# compute the instance root with visible keypoints
if root_type == 'kpt_center':
roots_coordinate[i] = visible_keypoints.mean(axis=0)
roots_visible[i] = 1
elif root_type == 'bbox_center':
roots_coordinate[i] = (visible_keypoints.max(axis=0) +
visible_keypoints.min(axis=0)) / 2.0
roots_visible[i] = 1
else:
raise ValueError(
f'the value of `root_type` must be \'kpt_center\' or '
f'\'bbox_center\', but got \'{root_type}\'')
return roots_coordinate, roots_visible
def get_instance_bbox(keypoints: np.ndarray,
keypoints_visible: Optional[np.ndarray] = None
) -> np.ndarray:
"""Calculate the pseudo instance bounding box from visible keypoints. The
bounding boxes are in the xyxy format.
Args:
keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D)
keypoints_visible (np.ndarray): Keypoint visibilities in shape
(N, K)
Returns:
np.ndarray: bounding boxes in [N, 4]
"""
bbox = np.zeros((keypoints.shape[0], 4), dtype=np.float32)
for i in range(keypoints.shape[0]):
if keypoints_visible is not None:
visible_keypoints = keypoints[i][keypoints_visible[i] > 0]
else:
visible_keypoints = keypoints[i]
if visible_keypoints.size == 0:
continue
bbox[i, :2] = visible_keypoints.min(axis=0)
bbox[i, 2:] = visible_keypoints.max(axis=0)
return bbox
def get_diagonal_lengths(keypoints: np.ndarray,
keypoints_visible: Optional[np.ndarray] = None
) -> np.ndarray:
"""Calculate the diagonal length of instance bounding box from visible
keypoints.
Args:
keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D)
keypoints_visible (np.ndarray): Keypoint visibilities in shape
(N, K)
Returns:
np.ndarray: bounding box diagonal length in [N]
"""
pseudo_bbox = get_instance_bbox(keypoints, keypoints_visible)
pseudo_bbox = pseudo_bbox.reshape(-1, 2, 2)
h_w_diff = pseudo_bbox[:, 1] - pseudo_bbox[:, 0]
diagonal_length = np.sqrt(np.power(h_w_diff, 2).sum(axis=1))
return diagonal_length