Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import datetime | |
import os.path as osp | |
import tempfile | |
from collections import OrderedDict, defaultdict | |
from typing import Dict, Optional, Sequence | |
import numpy as np | |
from mmengine.evaluator import BaseMetric | |
from mmengine.fileio import dump, get_local_path, load | |
from mmengine.logging import MMLogger | |
from xtcocotools.coco import COCO | |
from xtcocotools.cocoeval import COCOeval | |
from mmpose.registry import METRICS | |
from ..functional import oks_nms, soft_oks_nms | |
class CocoMetric(BaseMetric): | |
"""COCO pose estimation task evaluation metric. | |
Evaluate AR, AP, and mAP for keypoint detection tasks. Support COCO | |
dataset and other datasets in COCO format. Please refer to | |
`COCO keypoint evaluation <https://cocodataset.org/#keypoints-eval>`__ | |
for more details. | |
Args: | |
ann_file (str, optional): Path to the coco format annotation file. | |
If not specified, ground truth annotations from the dataset will | |
be converted to coco format. Defaults to None | |
use_area (bool): Whether to use ``'area'`` message in the annotations. | |
If the ground truth annotations (e.g. CrowdPose, AIC) do not have | |
the field ``'area'``, please set ``use_area=False``. | |
Defaults to ``True`` | |
iou_type (str): The same parameter as `iouType` in | |
:class:`xtcocotools.COCOeval`, which can be ``'keypoints'``, or | |
``'keypoints_crowd'`` (used in CrowdPose dataset). | |
Defaults to ``'keypoints'`` | |
score_mode (str): The mode to score the prediction results which | |
should be one of the following options: | |
- ``'bbox'``: Take the score of bbox as the score of the | |
prediction results. | |
- ``'bbox_keypoint'``: Use keypoint score to rescore the | |
prediction results. | |
- ``'bbox_rle'``: Use rle_score to rescore the | |
prediction results. | |
Defaults to ``'bbox_keypoint'` | |
keypoint_score_thr (float): The threshold of keypoint score. The | |
keypoints with score lower than it will not be included to | |
rescore the prediction results. Valid only when ``score_mode`` is | |
``bbox_keypoint``. Defaults to ``0.2`` | |
nms_mode (str): The mode to perform Non-Maximum Suppression (NMS), | |
which should be one of the following options: | |
- ``'oks_nms'``: Use Object Keypoint Similarity (OKS) to | |
perform NMS. | |
- ``'soft_oks_nms'``: Use Object Keypoint Similarity (OKS) | |
to perform soft NMS. | |
- ``'none'``: Do not perform NMS. Typically for bottomup mode | |
output. | |
Defaults to ``'oks_nms'` | |
nms_thr (float): The Object Keypoint Similarity (OKS) threshold | |
used in NMS when ``nms_mode`` is ``'oks_nms'`` or | |
``'soft_oks_nms'``. Will retain the prediction results with OKS | |
lower than ``nms_thr``. Defaults to ``0.9`` | |
format_only (bool): Whether only format the output results without | |
doing quantitative evaluation. This is designed for the need of | |
test submission when the ground truth annotations are absent. If | |
set to ``True``, ``outfile_prefix`` should specify the path to | |
store the output results. Defaults to ``False`` | |
outfile_prefix (str | None): The prefix of json files. It includes | |
the file path and the prefix of filename, e.g., ``'a/b/prefix'``. | |
If not specified, a temp file will be created. Defaults to ``None`` | |
collect_device (str): Device name used for collecting results from | |
different ranks during distributed training. Must be ``'cpu'`` or | |
``'gpu'``. Defaults to ``'cpu'`` | |
prefix (str, optional): The prefix that will be added in the metric | |
names to disambiguate homonymous metrics of different evaluators. | |
If prefix is not provided in the argument, ``self.default_prefix`` | |
will be used instead. Defaults to ``None`` | |
""" | |
default_prefix: Optional[str] = 'coco' | |
def __init__(self, | |
ann_file: Optional[str] = None, | |
use_area: bool = True, | |
iou_type: str = 'keypoints', | |
score_mode: str = 'bbox_keypoint', | |
keypoint_score_thr: float = 0.2, | |
nms_mode: str = 'oks_nms', | |
nms_thr: float = 0.9, | |
format_only: bool = False, | |
outfile_prefix: Optional[str] = None, | |
collect_device: str = 'cpu', | |
prefix: Optional[str] = None) -> None: | |
super().__init__(collect_device=collect_device, prefix=prefix) | |
self.ann_file = ann_file | |
# initialize coco helper with the annotation json file | |
# if ann_file is not specified, initialize with the converted dataset | |
if ann_file is not None: | |
with get_local_path(ann_file) as local_path: | |
self.coco = COCO(local_path) | |
else: | |
self.coco = None | |
self.use_area = use_area | |
self.iou_type = iou_type | |
allowed_score_modes = ['bbox', 'bbox_keypoint', 'bbox_rle', 'keypoint'] | |
if score_mode not in allowed_score_modes: | |
raise ValueError( | |
"`score_mode` should be one of 'bbox', 'bbox_keypoint', " | |
f"'bbox_rle', but got {score_mode}") | |
self.score_mode = score_mode | |
self.keypoint_score_thr = keypoint_score_thr | |
allowed_nms_modes = ['oks_nms', 'soft_oks_nms', 'none'] | |
if nms_mode not in allowed_nms_modes: | |
raise ValueError( | |
"`nms_mode` should be one of 'oks_nms', 'soft_oks_nms', " | |
f"'none', but got {nms_mode}") | |
self.nms_mode = nms_mode | |
self.nms_thr = nms_thr | |
if format_only: | |
assert outfile_prefix is not None, '`outfile_prefix` can not be '\ | |
'None when `format_only` is True, otherwise the result file '\ | |
'will be saved to a temp directory which will be cleaned up '\ | |
'in the end.' | |
elif ann_file is not None: | |
# do evaluation only if the ground truth annotations exist | |
assert 'annotations' in load(ann_file), \ | |
'Ground truth annotations are required for evaluation '\ | |
'when `format_only` is False.' | |
self.format_only = format_only | |
self.outfile_prefix = outfile_prefix | |
def process(self, data_batch: Sequence[dict], | |
data_samples: Sequence[dict]) -> None: | |
"""Process one batch of data samples and predictions. The processed | |
results should be stored in ``self.results``, which will be used to | |
compute the metrics when all batches have been processed. | |
Args: | |
data_batch (Sequence[dict]): A batch of data | |
from the dataloader. | |
data_samples (Sequence[dict]): A batch of outputs from | |
the model, each of which has the following keys: | |
- 'id': The id of the sample | |
- 'img_id': The image_id of the sample | |
- 'pred_instances': The prediction results of instance(s) | |
""" | |
for data_sample in data_samples: | |
if 'pred_instances' not in data_sample: | |
raise ValueError( | |
'`pred_instances` are required to process the ' | |
f'predictions results in {self.__class__.__name__}. ') | |
# keypoints.shape: [N, K, 2], | |
# N: number of instances, K: number of keypoints | |
# for topdown-style output, N is usually 1, while for | |
# bottomup-style output, N is the number of instances in the image | |
keypoints = data_sample['pred_instances']['keypoints'] | |
# [N, K], the scores for all keypoints of all instances | |
keypoint_scores = data_sample['pred_instances']['keypoint_scores'] | |
assert keypoint_scores.shape == keypoints.shape[:2] | |
# parse prediction results | |
pred = dict() | |
pred['id'] = data_sample['id'] | |
pred['img_id'] = data_sample['img_id'] | |
pred['keypoints'] = keypoints | |
pred['keypoint_scores'] = keypoint_scores | |
pred['category_id'] = data_sample.get('category_id', 1) | |
if 'bbox_scores' in data_sample['pred_instances']: | |
# some one-stage models will predict bboxes and scores | |
# together with keypoints | |
bbox_scores = data_sample['pred_instances']['bbox_scores'] | |
elif ('bbox_scores' not in data_sample['gt_instances'] | |
or len(data_sample['gt_instances']['bbox_scores']) != | |
len(keypoints)): | |
# bottom-up models might output different number of | |
# instances from annotation | |
bbox_scores = np.ones(len(keypoints)) | |
else: | |
# top-down models use detected bboxes, the scores of which | |
# are contained in the gt_instances | |
bbox_scores = data_sample['gt_instances']['bbox_scores'] | |
pred['bbox_scores'] = bbox_scores | |
# get area information | |
if 'bbox_scales' in data_sample['gt_instances']: | |
pred['areas'] = np.prod( | |
data_sample['gt_instances']['bbox_scales'], axis=1) | |
# parse gt | |
gt = dict() | |
if self.coco is None: | |
gt['width'] = data_sample['ori_shape'][1] | |
gt['height'] = data_sample['ori_shape'][0] | |
gt['img_id'] = data_sample['img_id'] | |
if self.iou_type == 'keypoints_crowd': | |
assert 'crowd_index' in data_sample, \ | |
'`crowd_index` is required when `self.iou_type` is ' \ | |
'`keypoints_crowd`' | |
gt['crowd_index'] = data_sample['crowd_index'] | |
assert 'raw_ann_info' in data_sample, \ | |
'The row ground truth annotations are required for ' \ | |
'evaluation when `ann_file` is not provided' | |
anns = data_sample['raw_ann_info'] | |
gt['raw_ann_info'] = anns if isinstance(anns, list) else [anns] | |
# add converted result to the results list | |
self.results.append((pred, gt)) | |
def gt_to_coco_json(self, gt_dicts: Sequence[dict], | |
outfile_prefix: str) -> str: | |
"""Convert ground truth to coco format json file. | |
Args: | |
gt_dicts (Sequence[dict]): Ground truth of the dataset. Each dict | |
contains the ground truth information about the data sample. | |
Required keys of the each `gt_dict` in `gt_dicts`: | |
- `img_id`: image id of the data sample | |
- `width`: original image width | |
- `height`: original image height | |
- `raw_ann_info`: the raw annotation information | |
Optional keys: | |
- `crowd_index`: measure the crowding level of an image, | |
defined in CrowdPose dataset | |
It is worth mentioning that, in order to compute `CocoMetric`, | |
there are some required keys in the `raw_ann_info`: | |
- `id`: the id to distinguish different annotations | |
- `image_id`: the image id of this annotation | |
- `category_id`: the category of the instance. | |
- `bbox`: the object bounding box | |
- `keypoints`: the keypoints cooridinates along with their | |
visibilities. Note that it need to be aligned | |
with the official COCO format, e.g., a list with length | |
N * 3, in which N is the number of keypoints. And each | |
triplet represent the [x, y, visible] of the keypoint. | |
- `iscrowd`: indicating whether the annotation is a crowd. | |
It is useful when matching the detection results to | |
the ground truth. | |
There are some optional keys as well: | |
- `area`: it is necessary when `self.use_area` is `True` | |
- `num_keypoints`: it is necessary when `self.iou_type` | |
is set as `keypoints_crowd`. | |
outfile_prefix (str): The filename prefix of the json files. If the | |
prefix is "somepath/xxx", the json file will be named | |
"somepath/xxx.gt.json". | |
Returns: | |
str: The filename of the json file. | |
""" | |
image_infos = [] | |
annotations = [] | |
img_ids = [] | |
ann_ids = [] | |
for gt_dict in gt_dicts: | |
# filter duplicate image_info | |
if gt_dict['img_id'] not in img_ids: | |
image_info = dict( | |
id=gt_dict['img_id'], | |
width=gt_dict['width'], | |
height=gt_dict['height'], | |
) | |
if self.iou_type == 'keypoints_crowd': | |
image_info['crowdIndex'] = gt_dict['crowd_index'] | |
image_infos.append(image_info) | |
img_ids.append(gt_dict['img_id']) | |
# filter duplicate annotations | |
for ann in gt_dict['raw_ann_info']: | |
if ann is None: | |
# during evaluation on bottom-up datasets, some images | |
# do not have instance annotation | |
continue | |
annotation = dict( | |
id=ann['id'], | |
image_id=ann['image_id'], | |
category_id=ann['category_id'], | |
bbox=ann['bbox'], | |
keypoints=ann['keypoints'], | |
iscrowd=ann['iscrowd'], | |
) | |
if self.use_area: | |
assert 'area' in ann, \ | |
'`area` is required when `self.use_area` is `True`' | |
annotation['area'] = ann['area'] | |
if self.iou_type == 'keypoints_crowd': | |
assert 'num_keypoints' in ann, \ | |
'`num_keypoints` is required when `self.iou_type` ' \ | |
'is `keypoints_crowd`' | |
annotation['num_keypoints'] = ann['num_keypoints'] | |
annotations.append(annotation) | |
ann_ids.append(ann['id']) | |
info = dict( | |
date_created=str(datetime.datetime.now()), | |
description='Coco json file converted by mmpose CocoMetric.') | |
coco_json = dict( | |
info=info, | |
images=image_infos, | |
categories=self.dataset_meta['CLASSES'], | |
licenses=None, | |
annotations=annotations, | |
) | |
converted_json_path = f'{outfile_prefix}.gt.json' | |
dump(coco_json, converted_json_path, sort_keys=True, indent=4) | |
return converted_json_path | |
def compute_metrics(self, results: list) -> Dict[str, float]: | |
"""Compute the metrics from processed results. | |
Args: | |
results (list): The processed results of each batch. | |
Returns: | |
Dict[str, float]: The computed metrics. The keys are the names of | |
the metrics, and the values are corresponding results. | |
""" | |
logger: MMLogger = MMLogger.get_current_instance() | |
# split prediction and gt list | |
preds, gts = zip(*results) | |
tmp_dir = None | |
if self.outfile_prefix is None: | |
tmp_dir = tempfile.TemporaryDirectory() | |
outfile_prefix = osp.join(tmp_dir.name, 'results') | |
else: | |
outfile_prefix = self.outfile_prefix | |
if self.coco is None: | |
# use converted gt json file to initialize coco helper | |
logger.info('Converting ground truth to coco format...') | |
coco_json_path = self.gt_to_coco_json( | |
gt_dicts=gts, outfile_prefix=outfile_prefix) | |
self.coco = COCO(coco_json_path) | |
kpts = defaultdict(list) | |
# group the preds by img_id | |
for pred in preds: | |
img_id = pred['img_id'] | |
for idx in range(len(pred['keypoints'])): | |
instance = { | |
'id': pred['id'], | |
'img_id': pred['img_id'], | |
'category_id': pred['category_id'], | |
'keypoints': pred['keypoints'][idx], | |
'keypoint_scores': pred['keypoint_scores'][idx], | |
'bbox_score': pred['bbox_scores'][idx], | |
} | |
if 'areas' in pred: | |
instance['area'] = pred['areas'][idx] | |
else: | |
# use keypoint to calculate bbox and get area | |
keypoints = pred['keypoints'][idx] | |
area = ( | |
np.max(keypoints[:, 0]) - np.min(keypoints[:, 0])) * ( | |
np.max(keypoints[:, 1]) - np.min(keypoints[:, 1])) | |
instance['area'] = area | |
kpts[img_id].append(instance) | |
# sort keypoint results according to id and remove duplicate ones | |
kpts = self._sort_and_unique_bboxes(kpts, key='id') | |
# score the prediction results according to `score_mode` | |
# and perform NMS according to `nms_mode` | |
valid_kpts = defaultdict(list) | |
num_keypoints = self.dataset_meta['num_keypoints'] | |
for img_id, instances in kpts.items(): | |
for instance in instances: | |
# concatenate the keypoint coordinates and scores | |
instance['keypoints'] = np.concatenate([ | |
instance['keypoints'], instance['keypoint_scores'][:, None] | |
], | |
axis=-1) | |
if self.score_mode == 'bbox': | |
instance['score'] = instance['bbox_score'] | |
elif self.score_mode == 'keypoint': | |
instance['score'] = np.mean(instance['keypoint_scores']) | |
else: | |
bbox_score = instance['bbox_score'] | |
if self.score_mode == 'bbox_rle': | |
keypoint_scores = instance['keypoint_scores'] | |
instance['score'] = float(bbox_score + | |
np.mean(keypoint_scores) + | |
np.max(keypoint_scores)) | |
else: # self.score_mode == 'bbox_keypoint': | |
mean_kpt_score = 0 | |
valid_num = 0 | |
for kpt_idx in range(num_keypoints): | |
kpt_score = instance['keypoint_scores'][kpt_idx] | |
if kpt_score > self.keypoint_score_thr: | |
mean_kpt_score += kpt_score | |
valid_num += 1 | |
if valid_num != 0: | |
mean_kpt_score /= valid_num | |
instance['score'] = bbox_score * mean_kpt_score | |
# perform nms | |
if self.nms_mode == 'none': | |
valid_kpts[img_id] = instances | |
else: | |
nms = oks_nms if self.nms_mode == 'oks_nms' else soft_oks_nms | |
keep = nms( | |
instances, | |
self.nms_thr, | |
sigmas=self.dataset_meta['sigmas']) | |
valid_kpts[img_id] = [instances[_keep] for _keep in keep] | |
# convert results to coco style and dump into a json file | |
self.results2json(valid_kpts, outfile_prefix=outfile_prefix) | |
# only format the results without doing quantitative evaluation | |
if self.format_only: | |
logger.info('results are saved in ' | |
f'{osp.dirname(outfile_prefix)}') | |
return {} | |
# evaluation results | |
eval_results = OrderedDict() | |
logger.info(f'Evaluating {self.__class__.__name__}...') | |
info_str = self._do_python_keypoint_eval(outfile_prefix) | |
name_value = OrderedDict(info_str) | |
eval_results.update(name_value) | |
if tmp_dir is not None: | |
tmp_dir.cleanup() | |
return eval_results | |
def results2json(self, keypoints: Dict[int, list], | |
outfile_prefix: str) -> str: | |
"""Dump the keypoint detection results to a COCO style json file. | |
Args: | |
keypoints (Dict[int, list]): Keypoint detection results | |
of the dataset. | |
outfile_prefix (str): The filename prefix of the json files. If the | |
prefix is "somepath/xxx", the json files will be named | |
"somepath/xxx.keypoints.json", | |
Returns: | |
str: The json file name of keypoint results. | |
""" | |
# the results with category_id | |
cat_results = [] | |
for _, img_kpts in keypoints.items(): | |
_keypoints = np.array( | |
[img_kpt['keypoints'] for img_kpt in img_kpts]) | |
num_keypoints = self.dataset_meta['num_keypoints'] | |
# collect all the person keypoints in current image | |
_keypoints = _keypoints.reshape(-1, num_keypoints * 3) | |
result = [{ | |
'image_id': img_kpt['img_id'], | |
'category_id': img_kpt['category_id'], | |
'keypoints': keypoint.tolist(), | |
'score': float(img_kpt['score']), | |
} for img_kpt, keypoint in zip(img_kpts, _keypoints)] | |
cat_results.extend(result) | |
res_file = f'{outfile_prefix}.keypoints.json' | |
dump(cat_results, res_file, sort_keys=True, indent=4) | |
def _do_python_keypoint_eval(self, outfile_prefix: str) -> list: | |
"""Do keypoint evaluation using COCOAPI. | |
Args: | |
outfile_prefix (str): The filename prefix of the json files. If the | |
prefix is "somepath/xxx", the json files will be named | |
"somepath/xxx.keypoints.json", | |
Returns: | |
list: a list of tuples. Each tuple contains the evaluation stats | |
name and corresponding stats value. | |
""" | |
res_file = f'{outfile_prefix}.keypoints.json' | |
coco_det = self.coco.loadRes(res_file) | |
sigmas = self.dataset_meta['sigmas'] | |
coco_eval = COCOeval(self.coco, coco_det, self.iou_type, sigmas, | |
self.use_area) | |
coco_eval.params.useSegm = None | |
coco_eval.evaluate() | |
coco_eval.accumulate() | |
coco_eval.summarize() | |
if self.iou_type == 'keypoints_crowd': | |
stats_names = [ | |
'AP', 'AP .5', 'AP .75', 'AR', 'AR .5', 'AR .75', 'AP(E)', | |
'AP(M)', 'AP(H)' | |
] | |
else: | |
stats_names = [ | |
'AP', 'AP .5', 'AP .75', 'AP (M)', 'AP (L)', 'AR', 'AR .5', | |
'AR .75', 'AR (M)', 'AR (L)' | |
] | |
info_str = list(zip(stats_names, coco_eval.stats)) | |
return info_str | |
def _sort_and_unique_bboxes(self, | |
kpts: Dict[int, list], | |
key: str = 'id') -> Dict[int, list]: | |
"""Sort keypoint detection results in each image and remove the | |
duplicate ones. Usually performed in multi-batch testing. | |
Args: | |
kpts (Dict[int, list]): keypoint prediction results. The keys are | |
'`img_id`' and the values are list that may contain | |
keypoints of multiple persons. Each element in the list is a | |
dict containing the ``'key'`` field. | |
See the argument ``key`` for details. | |
key (str): The key name in each person prediction results. The | |
corresponding value will be used for sorting the results. | |
Default: ``'id'``. | |
Returns: | |
Dict[int, list]: The sorted keypoint detection results. | |
""" | |
for img_id, persons in kpts.items(): | |
# deal with bottomup-style output | |
if isinstance(kpts[img_id][0][key], Sequence): | |
return kpts | |
num = len(persons) | |
kpts[img_id] = sorted(kpts[img_id], key=lambda x: x[key]) | |
for i in range(num - 1, 0, -1): | |
if kpts[img_id][i][key] == kpts[img_id][i - 1][key]: | |
del kpts[img_id][i] | |
return kpts | |