liyy201912's picture
Upload folder using huggingface_hub
cc0dd3c
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional, Sequence, Tuple, Union
import torch
from mmcv.cnn import build_conv_layer, build_upsample_layer
from mmengine.structures import PixelData
from torch import Tensor, nn
from mmpose.evaluation.functional import pose_pck_accuracy
from mmpose.models.utils.tta import flip_heatmaps
from mmpose.registry import KEYPOINT_CODECS, MODELS
from mmpose.utils.tensor_utils import to_numpy
from mmpose.utils.typing import (ConfigType, Features, OptConfigType,
OptSampleList, Predictions)
from ..base_head import BaseHead
OptIntSeq = Optional[Sequence[int]]
@MODELS.register_module()
class HeatmapHead(BaseHead):
"""Top-down heatmap head introduced in `Simple Baselines`_ by Xiao et al
(2018). The head is composed of a few deconvolutional layers followed by a
convolutional layer to generate heatmaps from low-resolution feature maps.
Args:
in_channels (int | Sequence[int]): Number of channels in the input
feature map
out_channels (int): Number of channels in the output heatmap
deconv_out_channels (Sequence[int], optional): The output channel
number of each deconv layer. Defaults to ``(256, 256, 256)``
deconv_kernel_sizes (Sequence[int | tuple], optional): The kernel size
of each deconv layer. Each element should be either an integer for
both height and width dimensions, or a tuple of two integers for
the height and the width dimension respectively.Defaults to
``(4, 4, 4)``
conv_out_channels (Sequence[int], optional): The output channel number
of each intermediate conv layer. ``None`` means no intermediate
conv layer between deconv layers and the final conv layer.
Defaults to ``None``
conv_kernel_sizes (Sequence[int | tuple], optional): The kernel size
of each intermediate conv layer. Defaults to ``None``
final_layer (dict): Arguments of the final Conv2d layer.
Defaults to ``dict(kernel_size=1)``
loss (Config): Config of the keypoint loss. Defaults to use
:class:`KeypointMSELoss`
decoder (Config, optional): The decoder config that controls decoding
keypoint coordinates from the network output. Defaults to ``None``
init_cfg (Config, optional): Config to control the initialization. See
:attr:`default_init_cfg` for default settings
extra (dict, optional): Extra configurations.
Defaults to ``None``
.. _`Simple Baselines`: https://arxiv.org/abs/1804.06208
"""
_version = 2
def __init__(self,
in_channels: Union[int, Sequence[int]],
out_channels: int,
deconv_out_channels: OptIntSeq = (256, 256, 256),
deconv_kernel_sizes: OptIntSeq = (4, 4, 4),
conv_out_channels: OptIntSeq = None,
conv_kernel_sizes: OptIntSeq = None,
final_layer: dict = dict(kernel_size=1),
loss: ConfigType = dict(
type='KeypointMSELoss', use_target_weight=True),
decoder: OptConfigType = None,
init_cfg: OptConfigType = None):
if init_cfg is None:
init_cfg = self.default_init_cfg
super().__init__(init_cfg)
self.in_channels = in_channels
self.out_channels = out_channels
self.loss_module = MODELS.build(loss)
if decoder is not None:
self.decoder = KEYPOINT_CODECS.build(decoder)
else:
self.decoder = None
if deconv_out_channels:
if deconv_kernel_sizes is None or len(deconv_out_channels) != len(
deconv_kernel_sizes):
raise ValueError(
'"deconv_out_channels" and "deconv_kernel_sizes" should '
'be integer sequences with the same length. Got '
f'mismatched lengths {deconv_out_channels} and '
f'{deconv_kernel_sizes}')
self.deconv_layers = self._make_deconv_layers(
in_channels=in_channels,
layer_out_channels=deconv_out_channels,
layer_kernel_sizes=deconv_kernel_sizes,
)
in_channels = deconv_out_channels[-1]
else:
self.deconv_layers = nn.Identity()
if conv_out_channels:
if conv_kernel_sizes is None or len(conv_out_channels) != len(
conv_kernel_sizes):
raise ValueError(
'"conv_out_channels" and "conv_kernel_sizes" should '
'be integer sequences with the same length. Got '
f'mismatched lengths {conv_out_channels} and '
f'{conv_kernel_sizes}')
self.conv_layers = self._make_conv_layers(
in_channels=in_channels,
layer_out_channels=conv_out_channels,
layer_kernel_sizes=conv_kernel_sizes)
in_channels = conv_out_channels[-1]
else:
self.conv_layers = nn.Identity()
if final_layer is not None:
cfg = dict(
type='Conv2d',
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1)
cfg.update(final_layer)
self.final_layer = build_conv_layer(cfg)
else:
self.final_layer = nn.Identity()
# Register the hook to automatically convert old version state dicts
self._register_load_state_dict_pre_hook(self._load_state_dict_pre_hook)
def _make_conv_layers(self, in_channels: int,
layer_out_channels: Sequence[int],
layer_kernel_sizes: Sequence[int]) -> nn.Module:
"""Create convolutional layers by given parameters."""
layers = []
for out_channels, kernel_size in zip(layer_out_channels,
layer_kernel_sizes):
padding = (kernel_size - 1) // 2
cfg = dict(
type='Conv2d',
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=1,
padding=padding)
layers.append(build_conv_layer(cfg))
layers.append(nn.BatchNorm2d(num_features=out_channels))
layers.append(nn.ReLU(inplace=True))
in_channels = out_channels
return nn.Sequential(*layers)
def _make_deconv_layers(self, in_channels: int,
layer_out_channels: Sequence[int],
layer_kernel_sizes: Sequence[int]) -> nn.Module:
"""Create deconvolutional layers by given parameters."""
layers = []
for out_channels, kernel_size in zip(layer_out_channels,
layer_kernel_sizes):
if kernel_size == 4:
padding = 1
output_padding = 0
elif kernel_size == 3:
padding = 1
output_padding = 1
elif kernel_size == 2:
padding = 0
output_padding = 0
else:
raise ValueError(f'Unsupported kernel size {kernel_size} for'
'deconvlutional layers in '
f'{self.__class__.__name__}')
cfg = dict(
type='deconv',
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=2,
padding=padding,
output_padding=output_padding,
bias=False)
layers.append(build_upsample_layer(cfg))
layers.append(nn.BatchNorm2d(num_features=out_channels))
layers.append(nn.ReLU(inplace=True))
in_channels = out_channels
return nn.Sequential(*layers)
@property
def default_init_cfg(self):
init_cfg = [
dict(
type='Normal', layer=['Conv2d', 'ConvTranspose2d'], std=0.001),
dict(type='Constant', layer='BatchNorm2d', val=1)
]
return init_cfg
def forward(self, feats: Tuple[Tensor]) -> Tensor:
"""Forward the network. The input is multi scale feature maps and the
output is the heatmap.
Args:
feats (Tuple[Tensor]): Multi scale feature maps.
Returns:
Tensor: output heatmap.
"""
x = feats[-1]
x = self.deconv_layers(x)
x = self.conv_layers(x)
x = self.final_layer(x)
return x
def predict(self,
feats: Features,
batch_data_samples: OptSampleList,
test_cfg: ConfigType = {}) -> Predictions:
"""Predict results from features.
Args:
feats (Tuple[Tensor] | List[Tuple[Tensor]]): The multi-stage
features (or multiple multi-stage features in TTA)
batch_data_samples (List[:obj:`PoseDataSample`]): The batch
data samples
test_cfg (dict): The runtime config for testing process. Defaults
to {}
Returns:
Union[InstanceList | Tuple[InstanceList | PixelDataList]]: If
``test_cfg['output_heatmap']==True``, return both pose and heatmap
prediction; otherwise only return the pose prediction.
The pose prediction is a list of ``InstanceData``, each contains
the following fields:
- keypoints (np.ndarray): predicted keypoint coordinates in
shape (num_instances, K, D) where K is the keypoint number
and D is the keypoint dimension
- keypoint_scores (np.ndarray): predicted keypoint scores in
shape (num_instances, K)
The heatmap prediction is a list of ``PixelData``, each contains
the following fields:
- heatmaps (Tensor): The predicted heatmaps in shape (K, h, w)
"""
if test_cfg.get('flip_test', False):
# TTA: flip test -> feats = [orig, flipped]
assert isinstance(feats, list) and len(feats) == 2
flip_indices = batch_data_samples[0].metainfo['flip_indices']
_feats, _feats_flip = feats
_batch_heatmaps = self.forward(_feats)
_batch_heatmaps_flip = flip_heatmaps(
self.forward(_feats_flip),
flip_mode=test_cfg.get('flip_mode', 'heatmap'),
flip_indices=flip_indices,
shift_heatmap=test_cfg.get('shift_heatmap', False))
batch_heatmaps = (_batch_heatmaps + _batch_heatmaps_flip) * 0.5
else:
batch_heatmaps = self.forward(feats)
preds = self.decode(batch_heatmaps)
if test_cfg.get('output_heatmaps', False):
pred_fields = [
PixelData(heatmaps=hm) for hm in batch_heatmaps.detach()
]
return preds, pred_fields
else:
return preds
def loss(self,
feats: Tuple[Tensor],
batch_data_samples: OptSampleList,
train_cfg: ConfigType = {}) -> dict:
"""Calculate losses from a batch of inputs and data samples.
Args:
feats (Tuple[Tensor]): The multi-stage features
batch_data_samples (List[:obj:`PoseDataSample`]): The batch
data samples
train_cfg (dict): The runtime config for training process.
Defaults to {}
Returns:
dict: A dictionary of losses.
"""
pred_fields = self.forward(feats)
gt_heatmaps = torch.stack(
[d.gt_fields.heatmaps for d in batch_data_samples])
keypoint_weights = torch.cat([
d.gt_instance_labels.keypoint_weights for d in batch_data_samples
])
# calculate losses
losses = dict()
loss = self.loss_module(pred_fields, gt_heatmaps, keypoint_weights)
losses.update(loss_kpt=loss)
# calculate accuracy
if train_cfg.get('compute_acc', True):
_, avg_acc, _ = pose_pck_accuracy(
output=to_numpy(pred_fields),
target=to_numpy(gt_heatmaps),
mask=to_numpy(keypoint_weights) > 0)
acc_pose = torch.tensor(avg_acc, device=gt_heatmaps.device)
losses.update(acc_pose=acc_pose)
return losses
def _load_state_dict_pre_hook(self, state_dict, prefix, local_meta, *args,
**kwargs):
"""A hook function to convert old-version state dict of
:class:`DeepposeRegressionHead` (before MMPose v1.0.0) to a
compatible format of :class:`RegressionHead`.
The hook will be automatically registered during initialization.
"""
version = local_meta.get('version', None)
if version and version >= self._version:
return
# convert old-version state dict
keys = list(state_dict.keys())
for _k in keys:
if not _k.startswith(prefix):
continue
v = state_dict.pop(_k)
k = _k[len(prefix):]
# In old version, "final_layer" includes both intermediate
# conv layers (new "conv_layers") and final conv layers (new
# "final_layer").
#
# If there is no intermediate conv layer, old "final_layer" will
# have keys like "final_layer.xxx", which should be still
# named "final_layer.xxx";
#
# If there are intermediate conv layers, old "final_layer" will
# have keys like "final_layer.n.xxx", where the weights of the last
# one should be renamed "final_layer.xxx", and others should be
# renamed "conv_layers.n.xxx"
k_parts = k.split('.')
if k_parts[0] == 'final_layer':
if len(k_parts) == 3:
assert isinstance(self.conv_layers, nn.Sequential)
idx = int(k_parts[1])
if idx < len(self.conv_layers):
# final_layer.n.xxx -> conv_layers.n.xxx
k_new = 'conv_layers.' + '.'.join(k_parts[1:])
else:
# final_layer.n.xxx -> final_layer.xxx
k_new = 'final_layer.' + k_parts[2]
else:
# final_layer.xxx remains final_layer.xxx
k_new = k
else:
k_new = k
state_dict[prefix + k_new] = v