Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import Optional, Sequence, Tuple, Union | |
import numpy as np | |
import torch | |
from mmengine.logging import MessageHub | |
from torch import Tensor | |
from mmpose.evaluation.functional import keypoint_pck_accuracy | |
from mmpose.registry import MODELS | |
from mmpose.utils.tensor_utils import to_numpy | |
from mmpose.utils.typing import ConfigType, OptConfigType, OptSampleList | |
from .integral_regression_head import IntegralRegressionHead | |
OptIntSeq = Optional[Sequence[int]] | |
class DSNTHead(IntegralRegressionHead): | |
"""Top-down integral regression head introduced in `DSNT`_ by Nibali et | |
al(2018). The head contains a differentiable spatial to numerical transform | |
(DSNT) layer that do soft-argmax operation on the predicted heatmaps to | |
regress the coordinates. | |
This head is used for algorithms that require supervision of heatmaps | |
in `DSNT` approach. | |
Args: | |
in_channels (int | sequence[int]): Number of input channels | |
in_featuremap_size (int | sequence[int]): Size of input feature map | |
num_joints (int): Number of joints | |
lambda_t (int): Discard heatmap-based loss when current | |
epoch > lambda_t. Defaults to -1. | |
debias (bool): Whether to remove the bias of Integral Pose Regression. | |
see `Removing the Bias of Integral Pose Regression`_ by Gu et al | |
(2021). Defaults to ``False``. | |
beta (float): A smoothing parameter in softmax. Defaults to ``1.0``. | |
deconv_out_channels (sequence[int]): The output channel number of each | |
deconv layer. Defaults to ``(256, 256, 256)`` | |
deconv_kernel_sizes (sequence[int | tuple], optional): The kernel size | |
of each deconv layer. Each element should be either an integer for | |
both height and width dimensions, or a tuple of two integers for | |
the height and the width dimension respectively.Defaults to | |
``(4, 4, 4)`` | |
conv_out_channels (sequence[int], optional): The output channel number | |
of each intermediate conv layer. ``None`` means no intermediate | |
conv layer between deconv layers and the final conv layer. | |
Defaults to ``None`` | |
conv_kernel_sizes (sequence[int | tuple], optional): The kernel size | |
of each intermediate conv layer. Defaults to ``None`` | |
final_layer (dict): Arguments of the final Conv2d layer. | |
Defaults to ``dict(kernel_size=1)`` | |
loss (Config): Config for keypoint loss. Defaults to use | |
:class:`DSNTLoss` | |
decoder (Config, optional): The decoder config that controls decoding | |
keypoint coordinates from the network output. Defaults to ``None`` | |
init_cfg (Config, optional): Config to control the initialization. See | |
:attr:`default_init_cfg` for default settings | |
.. _`DSNT`: https://arxiv.org/abs/1801.07372 | |
""" | |
_version = 2 | |
def __init__(self, | |
in_channels: Union[int, Sequence[int]], | |
in_featuremap_size: Tuple[int, int], | |
num_joints: int, | |
lambda_t: int = -1, | |
debias: bool = False, | |
beta: float = 1.0, | |
deconv_out_channels: OptIntSeq = (256, 256, 256), | |
deconv_kernel_sizes: OptIntSeq = (4, 4, 4), | |
conv_out_channels: OptIntSeq = None, | |
conv_kernel_sizes: OptIntSeq = None, | |
final_layer: dict = dict(kernel_size=1), | |
loss: ConfigType = dict( | |
type='MultipleLossWrapper', | |
losses=[ | |
dict(type='SmoothL1Loss', use_target_weight=True), | |
dict(type='JSDiscretLoss', use_target_weight=True) | |
]), | |
decoder: OptConfigType = None, | |
init_cfg: OptConfigType = None): | |
super().__init__( | |
in_channels=in_channels, | |
in_featuremap_size=in_featuremap_size, | |
num_joints=num_joints, | |
debias=debias, | |
beta=beta, | |
deconv_out_channels=deconv_out_channels, | |
deconv_kernel_sizes=deconv_kernel_sizes, | |
conv_out_channels=conv_out_channels, | |
conv_kernel_sizes=conv_kernel_sizes, | |
final_layer=final_layer, | |
loss=loss, | |
decoder=decoder, | |
init_cfg=init_cfg) | |
self.lambda_t = lambda_t | |
def loss(self, | |
inputs: Tuple[Tensor], | |
batch_data_samples: OptSampleList, | |
train_cfg: ConfigType = {}) -> dict: | |
"""Calculate losses from a batch of inputs and data samples.""" | |
pred_coords, pred_heatmaps = self.forward(inputs) | |
keypoint_labels = torch.cat( | |
[d.gt_instance_labels.keypoint_labels for d in batch_data_samples]) | |
keypoint_weights = torch.cat([ | |
d.gt_instance_labels.keypoint_weights for d in batch_data_samples | |
]) | |
gt_heatmaps = torch.stack( | |
[d.gt_fields.heatmaps for d in batch_data_samples]) | |
input_list = [pred_coords, pred_heatmaps] | |
target_list = [keypoint_labels, gt_heatmaps] | |
# calculate losses | |
losses = dict() | |
loss_list = self.loss_module(input_list, target_list, keypoint_weights) | |
loss = loss_list[0] + loss_list[1] | |
if self.lambda_t > 0: | |
mh = MessageHub.get_current_instance() | |
cur_epoch = mh.get_info('epoch') | |
if cur_epoch >= self.lambda_t: | |
loss = loss_list[0] | |
losses.update(loss_kpt=loss) | |
# calculate accuracy | |
_, avg_acc, _ = keypoint_pck_accuracy( | |
pred=to_numpy(pred_coords), | |
gt=to_numpy(keypoint_labels), | |
mask=to_numpy(keypoint_weights) > 0, | |
thr=0.05, | |
norm_factor=np.ones((pred_coords.size(0), 2), dtype=np.float32)) | |
acc_pose = torch.tensor(avg_acc, device=keypoint_labels.device) | |
losses.update(acc_pose=acc_pose) | |
return losses | |