# Copyright (c) OpenMMLab. All rights reserved. import math from itertools import groupby from typing import Dict, List, Optional, Tuple, Union import cv2 import mmcv import numpy as np from ...utils import FrameMessage from ..base_visualizer_node import BaseVisualizerNode from ..registry import NODES def imshow_bboxes(img, bboxes, labels=None, colors='green', text_color='white', thickness=1, font_scale=0.5): """Draw bboxes with labels (optional) on an image. This is a wrapper of mmcv.imshow_bboxes. Args: img (str or ndarray): The image to be displayed. bboxes (ndarray): ndarray of shape (k, 4), each row is a bbox in format [x1, y1, x2, y2]. labels (str or list[str], optional): labels of each bbox. colors (list[str or tuple or :obj:`Color`]): A list of colors. text_color (str or tuple or :obj:`Color`): Color of texts. thickness (int): Thickness of lines. font_scale (float): Font scales of texts. Returns: ndarray: The image with bboxes drawn on it. """ # adapt to mmcv.imshow_bboxes input format bboxes = np.split( bboxes, bboxes.shape[0], axis=0) if bboxes.shape[0] > 0 else [] if not isinstance(colors, list): colors = [colors for _ in range(len(bboxes))] colors = [mmcv.color_val(c) for c in colors] assert len(bboxes) == len(colors) img = mmcv.imshow_bboxes( img, bboxes, colors, top_k=-1, thickness=thickness, show=False, out_file=None) if labels is not None: if not isinstance(labels, list): labels = [labels for _ in range(len(bboxes))] assert len(labels) == len(bboxes) for bbox, label, color in zip(bboxes, labels, colors): if label is None: continue bbox_int = bbox[0, :4].astype(np.int32) # roughly estimate the proper font size text_size, text_baseline = cv2.getTextSize(label, cv2.FONT_HERSHEY_DUPLEX, font_scale, thickness) text_x1 = bbox_int[0] text_y1 = max(0, bbox_int[1] - text_size[1] - text_baseline) text_x2 = bbox_int[0] + text_size[0] text_y2 = text_y1 + text_size[1] + text_baseline cv2.rectangle(img, (text_x1, text_y1), (text_x2, text_y2), color, cv2.FILLED) cv2.putText(img, label, (text_x1, text_y2 - text_baseline), cv2.FONT_HERSHEY_DUPLEX, font_scale, mmcv.color_val(text_color), thickness) return img def imshow_keypoints(img, pose_result, skeleton=None, kpt_score_thr=0.3, pose_kpt_color=None, pose_link_color=None, radius=4, thickness=1, show_keypoint_weight=False): """Draw keypoints and links on an image. Args: img (str or Tensor): The image to draw poses on. If an image array is given, id will be modified in-place. pose_result (list[kpts]): The poses to draw. Each element kpts is a set of K keypoints as an Kx3 numpy.ndarray, where each keypoint is represented as x, y, score. kpt_score_thr (float, optional): Minimum score of keypoints to be shown. Default: 0.3. pose_kpt_color (np.array[Nx3]`): Color of N keypoints. If None, the keypoint will not be drawn. pose_link_color (np.array[Mx3]): Color of M links. If None, the links will not be drawn. thickness (int): Thickness of lines. """ img = mmcv.imread(img) img_h, img_w, _ = img.shape for kpts in pose_result: kpts = np.array(kpts, copy=False) # draw each point on image if pose_kpt_color is not None: assert len(pose_kpt_color) == len(kpts) for kid, kpt in enumerate(kpts): x_coord, y_coord, kpt_score = int(kpt[0]), int(kpt[1]), kpt[2] if kpt_score < kpt_score_thr or pose_kpt_color[kid] is None: # skip the point that should not be drawn continue color = tuple(int(c) for c in pose_kpt_color[kid]) if show_keypoint_weight: img_copy = img.copy() cv2.circle(img_copy, (int(x_coord), int(y_coord)), radius, color, -1) transparency = max(0, min(1, kpt_score)) cv2.addWeighted( img_copy, transparency, img, 1 - transparency, 0, dst=img) else: cv2.circle(img, (int(x_coord), int(y_coord)), radius, color, -1) # draw links if skeleton is not None and pose_link_color is not None: assert len(pose_link_color) == len(skeleton) for sk_id, sk in enumerate(skeleton): pos1 = (int(kpts[sk[0], 0]), int(kpts[sk[0], 1])) pos2 = (int(kpts[sk[1], 0]), int(kpts[sk[1], 1])) if (pos1[0] <= 0 or pos1[0] >= img_w or pos1[1] <= 0 or pos1[1] >= img_h or pos2[0] <= 0 or pos2[0] >= img_w or pos2[1] <= 0 or pos2[1] >= img_h or kpts[sk[0], 2] < kpt_score_thr or kpts[sk[1], 2] < kpt_score_thr or pose_link_color[sk_id] is None): # skip the link that should not be drawn continue color = tuple(int(c) for c in pose_link_color[sk_id]) if show_keypoint_weight: img_copy = img.copy() X = (pos1[0], pos2[0]) Y = (pos1[1], pos2[1]) mX = np.mean(X) mY = np.mean(Y) length = ((Y[0] - Y[1])**2 + (X[0] - X[1])**2)**0.5 angle = math.degrees(math.atan2(Y[0] - Y[1], X[0] - X[1])) stickwidth = 2 polygon = cv2.ellipse2Poly( (int(mX), int(mY)), (int(length / 2), int(stickwidth)), int(angle), 0, 360, 1) cv2.fillConvexPoly(img_copy, polygon, color) transparency = max( 0, min(1, 0.5 * (kpts[sk[0], 2] + kpts[sk[1], 2]))) cv2.addWeighted( img_copy, transparency, img, 1 - transparency, 0, dst=img) else: cv2.line(img, pos1, pos2, color, thickness=thickness) return img @NODES.register_module() class ObjectVisualizerNode(BaseVisualizerNode): """Visualize the bounding box and keypoints of objects. Args: name (str): The node name (also thread name) input_buffer (str): The name of the input buffer output_buffer (str|list): The name(s) of the output buffer(s) enable_key (str|int, optional): Set a hot-key to toggle enable/disable of the node. If an int value is given, it will be treated as an ascii code of a key. Please note: (1) If ``enable_key`` is set, the ``bypass()`` method need to be overridden to define the node behavior when disabled; (2) Some hot-keys are reserved for particular use. For example: 'q', 'Q' and 27 are used for exiting. Default: ``None`` enable (bool): Default enable/disable status. Default: ``True`` show_bbox (bool): Set ``True`` to show the bboxes of detection objects. Default: ``True`` show_keypoint (bool): Set ``True`` to show the pose estimation results. Default: ``True`` must_have_bbox (bool): Only show objects with keypoints. Default: ``False`` kpt_thr (float): The threshold of keypoint score. Default: 0.3 radius (int): The radius of keypoint. Default: 4 thickness (int): The thickness of skeleton. Default: 2 bbox_color (str|tuple|dict): The color of bboxes. If a single color is given (a str like 'green' or a BGR tuple like (0, 255, 0)), it will be used for all bboxes. If a dict is given, it will be used as a map from class labels to bbox colors. If not given, a default color map will be used. Default: ``None`` Example:: >>> cfg = dict( ... type='ObjectVisualizerNode', ... name='object visualizer', ... enable_key='v', ... enable=True, ... show_bbox=True, ... must_have_keypoint=False, ... show_keypoint=True, ... input_buffer='frame', ... output_buffer='vis') >>> from mmpose.apis.webcam.nodes import NODES >>> node = NODES.build(cfg) """ default_bbox_color = { 'person': (148, 139, 255), 'cat': (255, 255, 0), 'dog': (255, 255, 0), } def __init__(self, name: str, input_buffer: str, output_buffer: Union[str, List[str]], enable_key: Optional[Union[str, int]] = None, enable: bool = True, show_bbox: bool = True, show_keypoint: bool = True, must_have_keypoint: bool = False, kpt_thr: float = 0.3, radius: int = 4, thickness: int = 2, bbox_color: Optional[Union[str, Tuple, Dict]] = 'green'): super().__init__( name=name, input_buffer=input_buffer, output_buffer=output_buffer, enable_key=enable_key, enable=enable) self.kpt_thr = kpt_thr self.bbox_color = bbox_color self.show_bbox = show_bbox self.show_keypoint = show_keypoint self.must_have_keypoint = must_have_keypoint self.radius = radius self.thickness = thickness def _draw_bbox(self, canvas: np.ndarray, input_msg: FrameMessage): """Draw object bboxes.""" if self.must_have_keypoint: objects = input_msg.get_objects( lambda x: 'bbox' in x and 'keypoints' in x) else: objects = input_msg.get_objects(lambda x: 'bbox' in x) # return if there is no detected objects if not objects: return canvas bboxes = [obj['bbox'] for obj in objects] labels = [obj.get('label', None) for obj in objects] default_color = (0, 255, 0) # Get bbox colors if isinstance(self.bbox_color, dict): colors = [ self.bbox_color.get(label, default_color) for label in labels ] else: colors = self.bbox_color imshow_bboxes( canvas, np.vstack(bboxes), labels=labels, colors=colors, text_color='white', font_scale=0.5) return canvas def _draw_keypoint(self, canvas: np.ndarray, input_msg: FrameMessage): """Draw object keypoints.""" objects = input_msg.get_objects(lambda x: 'pose_model_cfg' in x) # return if there is no object with keypoints if not objects: return canvas for model_cfg, group in groupby(objects, lambda x: x['pose_model_cfg']): dataset_info = objects[0]['dataset_meta'] keypoints = [ np.concatenate( (obj['keypoints'], obj['keypoint_scores'][:, None]), axis=1) for obj in group ] imshow_keypoints( canvas, keypoints, skeleton=dataset_info['skeleton_links'], kpt_score_thr=self.kpt_thr, pose_kpt_color=dataset_info['keypoint_colors'], pose_link_color=dataset_info['skeleton_link_colors'], radius=self.radius, thickness=self.thickness) return canvas def draw(self, input_msg: FrameMessage) -> np.ndarray: canvas = input_msg.get_image() if self.show_bbox: canvas = self._draw_bbox(canvas, input_msg) if self.show_keypoint: canvas = self._draw_keypoint(canvas, input_msg) return canvas