# Copyright (c) OpenMMLab. All rights reserved. from itertools import product from typing import Tuple import numpy as np def generate_offset_heatmap( heatmap_size: Tuple[int, int], keypoints: np.ndarray, keypoints_visible: np.ndarray, radius_factor: float, ) -> Tuple[np.ndarray, np.ndarray]: """Generate offset heatmaps of keypoints, where each keypoint is represented by 3 maps: one pixel-level class label map (1 for keypoint and 0 for non-keypoint) and 2 pixel-level offset maps for x and y directions respectively. Args: heatmap_size (Tuple[int, int]): Heatmap size in [W, H] keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D) keypoints_visible (np.ndarray): Keypoint visibilities in shape (N, K) radius_factor (float): The radius factor of the binary label map. The positive region is defined as the neighbor of the keypoint with the radius :math:`r=radius_factor*max(W, H)` Returns: tuple: - heatmap (np.ndarray): The generated heatmap in shape (K*3, H, W) where [W, H] is the `heatmap_size` - keypoint_weights (np.ndarray): The target weights in shape (K,) """ N, K, _ = keypoints.shape W, H = heatmap_size heatmaps = np.zeros((K, 3, H, W), dtype=np.float32) keypoint_weights = keypoints_visible.copy() # xy grid x = np.arange(0, W, 1) y = np.arange(0, H, 1)[:, None] # positive area radius in the classification map radius = radius_factor * max(W, H) for n, k in product(range(N), range(K)): if keypoints_visible[n, k] < 0.5: continue mu = keypoints[n, k] x_offset = (mu[0] - x) / radius y_offset = (mu[1] - y) / radius heatmaps[k, 0] = np.where(x_offset**2 + y_offset**2 <= 1, 1., 0.) heatmaps[k, 1] = x_offset heatmaps[k, 2] = y_offset heatmaps = heatmaps.reshape(K * 3, H, W) return heatmaps, keypoint_weights def generate_displacement_heatmap( heatmap_size: Tuple[int, int], keypoints: np.ndarray, keypoints_visible: np.ndarray, roots: np.ndarray, roots_visible: np.ndarray, diagonal_lengths: np.ndarray, radius: float, ): """Generate displacement heatmaps of keypoints, where each keypoint is represented by 3 maps: one pixel-level class label map (1 for keypoint and 0 for non-keypoint) and 2 pixel-level offset maps for x and y directions respectively. Args: heatmap_size (Tuple[int, int]): Heatmap size in [W, H] keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D) keypoints_visible (np.ndarray): Keypoint visibilities in shape (N, K) roots (np.ndarray): Coordinates of instance centers in shape (N, D). The displacement fields of each instance will locate around its center. roots_visible (np.ndarray): Roots visibilities in shape (N,) diagonal_lengths (np.ndarray): Diaginal length of the bounding boxes of each instance in shape (N,) radius (float): The radius factor of the binary label map. The positive region is defined as the neighbor of the keypoint with the radius :math:`r=radius_factor*max(W, H)` Returns: tuple: - displacements (np.ndarray): The generated displacement map in shape (K*2, H, W) where [W, H] is the `heatmap_size` - displacement_weights (np.ndarray): The target weights in shape (K*2, H, W) """ N, K, _ = keypoints.shape W, H = heatmap_size displacements = np.zeros((K * 2, H, W), dtype=np.float32) displacement_weights = np.zeros((K * 2, H, W), dtype=np.float32) instance_size_map = np.zeros((H, W), dtype=np.float32) for n in range(N): if (roots_visible[n] < 1 or (roots[n, 0] < 0 or roots[n, 1] < 0) or (roots[n, 0] >= W or roots[n, 1] >= H)): continue diagonal_length = diagonal_lengths[n] for k in range(K): if keypoints_visible[n, k] < 1 or keypoints[n, k, 0] < 0 \ or keypoints[n, k, 1] < 0 or keypoints[n, k, 0] >= W \ or keypoints[n, k, 1] >= H: continue start_x = max(int(roots[n, 0] - radius), 0) start_y = max(int(roots[n, 1] - radius), 0) end_x = min(int(roots[n, 0] + radius), W) end_y = min(int(roots[n, 1] + radius), H) for x in range(start_x, end_x): for y in range(start_y, end_y): if displacements[2 * k, y, x] != 0 or displacements[2 * k + 1, y, x] != 0: if diagonal_length > instance_size_map[y, x]: # keep the gt displacement of smaller instance continue displacement_weights[2 * k:2 * k + 2, y, x] = 1 / diagonal_length displacements[2 * k:2 * k + 2, y, x] = keypoints[n, k] - [x, y] instance_size_map[y, x] = diagonal_length return displacements, displacement_weights