# Copyright (c) OpenMMLab. All rights reserved. from typing import List, Tuple, Union import numpy as np from mmcv.transforms import BaseTransform from mmpose.registry import TRANSFORMS @TRANSFORMS.register_module() class KeypointConverter(BaseTransform): """Change the order of keypoints according to the given mapping. Required Keys: - keypoints - keypoints_visible Modified Keys: - keypoints - keypoints_visible Args: num_keypoints (int): The number of keypoints in target dataset. mapping (list): A list containing mapping indexes. Each element has format (source_index, target_index) Example: >>> import numpy as np >>> # case 1: 1-to-1 mapping >>> # (0, 0) means target[0] = source[0] >>> self = KeypointConverter( >>> num_keypoints=3, >>> mapping=[ >>> (0, 0), (1, 1), (2, 2), (3, 3) >>> ]) >>> results = dict( >>> keypoints=np.arange(34).reshape(2, 3, 2), >>> keypoints_visible=np.arange(34).reshape(2, 3, 2) % 2) >>> results = self(results) >>> assert np.equal(results['keypoints'], >>> np.arange(34).reshape(2, 3, 2)).all() >>> assert np.equal(results['keypoints_visible'], >>> np.arange(34).reshape(2, 3, 2) % 2).all() >>> >>> # case 2: 2-to-1 mapping >>> # ((1, 2), 0) means target[0] = (source[1] + source[2]) / 2 >>> self = KeypointConverter( >>> num_keypoints=3, >>> mapping=[ >>> ((1, 2), 0), (1, 1), (2, 2) >>> ]) >>> results = dict( >>> keypoints=np.arange(34).reshape(2, 3, 2), >>> keypoints_visible=np.arange(34).reshape(2, 3, 2) % 2) >>> results = self(results) """ def __init__(self, num_keypoints: int, mapping: Union[List[Tuple[int, int]], List[Tuple[Tuple, int]]]): self.num_keypoints = num_keypoints self.mapping = mapping source_index, target_index = zip(*mapping) src1, src2 = [], [] interpolation = False for x in source_index: if isinstance(x, (list, tuple)): assert len(x) == 2, 'source_index should be a list/tuple of ' \ 'length 2' src1.append(x[0]) src2.append(x[1]) interpolation = True else: src1.append(x) src2.append(x) # When paired source_indexes are input, # keep a self.source_index2 for interpolation if interpolation: self.source_index2 = src2 self.source_index = src1 self.target_index = target_index self.interpolation = interpolation def transform(self, results: dict) -> dict: num_instances = results['keypoints'].shape[0] keypoints = np.zeros((num_instances, self.num_keypoints, 2)) keypoints_visible = np.zeros((num_instances, self.num_keypoints)) # When paired source_indexes are input, # perform interpolation with self.source_index and self.source_index2 if self.interpolation: keypoints[:, self.target_index] = 0.5 * ( results['keypoints'][:, self.source_index] + results['keypoints'][:, self.source_index2]) keypoints_visible[:, self.target_index] = results[ 'keypoints_visible'][:, self.source_index] * \ results['keypoints_visible'][:, self.source_index2] else: keypoints[:, self.target_index] = results['keypoints'][:, self. source_index] keypoints_visible[:, self.target_index] = results[ 'keypoints_visible'][:, self.source_index] results['keypoints'] = keypoints results['keypoints_visible'] = keypoints_visible return results def __repr__(self) -> str: """print the basic information of the transform. Returns: str: Formatted string. """ repr_str = self.__class__.__name__ repr_str += f'(num_keypoints={self.num_keypoints}, '\ f'mapping={self.mapping})' return repr_str