# Copyright (c) OpenMMLab. All rights reserved. # This is a BETA new format config file, and the usage may change recently. from mmengine.dataset import DefaultSampler from mmpretrain.datasets import (CenterCrop, ImageNet, LoadImageFromFile, PackInputs, RandomFlip, RandomResizedCrop, ResizeEdge) from mmpretrain.evaluation import Accuracy # dataset settings dataset_type = ImageNet data_preprocessor = dict( num_classes=1000, # RGB format normalization parameters mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], # convert image from BGR to RGB to_rgb=True, ) train_pipeline = [ dict(type=LoadImageFromFile), dict(type=RandomResizedCrop, scale=224), dict(type=RandomFlip, prob=0.5, direction='horizontal'), dict(type=PackInputs), ] test_pipeline = [ dict(type=LoadImageFromFile), dict(type=ResizeEdge, scale=256, edge='short'), dict(type=CenterCrop, crop_size=224), dict(type=PackInputs), ] train_dataloader = dict( batch_size=32, num_workers=5, dataset=dict( type=dataset_type, data_root='data/imagenet', ann_file='meta/train.txt', data_prefix='train', pipeline=train_pipeline), sampler=dict(type=DefaultSampler, shuffle=True), ) val_dataloader = dict( batch_size=32, num_workers=5, dataset=dict( type=dataset_type, data_root='data/imagenet', ann_file='meta/val.txt', data_prefix='val', pipeline=test_pipeline), sampler=dict(type=DefaultSampler, shuffle=False), ) val_evaluator = dict(type=Accuracy, topk=(1, 5)) # If you want standard test, please manually configure the test dataset test_dataloader = val_dataloader test_evaluator = val_evaluator