# Copyright (c) OpenMMLab. All rights reserved. # Modified from https://github.com/zejiangh/MILAN from collections import OrderedDict from typing import Optional, Tuple, Union import numpy as np import torch from mmengine.logging import MMLogger from torch import nn from mmpretrain.registry import MODELS class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x: torch.Tensor) -> torch.Tensor: """Forward function.""" orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) @MODELS.register_module() class QuickGELU(nn.Module): """A faster version of GELU.""" def forward(self, x: torch.Tensor) -> torch.Tensor: """Forward function.""" return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): """Residual Attention Block (RAB). This module implements the same function as the MultiheadAttention, but with a different interface, which is mainly used in CLIP. Args: d_model (int): The feature dimension. n_head (int): The number of attention heads. attn_mask (torch.Tensor, optional): The attention mask. Defaults to None. """ def __init__(self, d_model: int, n_head: int, attn_mask: Optional[torch.Tensor] = None, return_attention: bool = False) -> None: super().__init__() self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential( OrderedDict([('c_fc', nn.Linear(d_model, d_model * 4)), ('gelu', QuickGELU()), ('c_proj', nn.Linear(d_model * 4, d_model))])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask self.return_attention = return_attention def attention(self, x: torch.Tensor) -> torch.Tensor: """Attention function.""" self.attn_mask = self.attn_mask.to( dtype=x.dtype, device=x.device) if self.attn_mask is not None else None if self.return_attention: return self.attn( x, x, x, need_weights=self.return_attention, attn_mask=self.attn_mask) else: return self.attn( x, x, x, need_weights=self.return_attention, attn_mask=self.attn_mask)[0] def forward( self, x: torch.Tensor ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: """Forward function.""" if self.return_attention: x_, attention = self.attention(self.ln_1(x)) x = x + x_ x = x + self.mlp(self.ln_2(x)) return x, attention else: x = x + self.attention(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class Transformer(nn.Module): """Transformer. Both visual and text branches use this transformer. Args: width (int): The feature dimension. layers (int): The number of layers. heads (int): The number of attention heads. attn_mask (torch.Tensor, optional): The attention mask. """ def __init__(self, width: int, layers: int, heads: int, attn_mask: Optional[torch.Tensor] = None) -> None: super().__init__() self.width = width self.layers = layers self.resblocks = nn.ModuleList() for _ in range(layers - 1): self.resblocks.append( ResidualAttentionBlock(width, heads, attn_mask)) self.resblocks.append( ResidualAttentionBlock( width, heads, attn_mask, return_attention=True)) def forward( self, x: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Forward function.""" z = [] for idx, blk in enumerate(self.resblocks): if idx < self.layers - 1: x = blk(x) z.append(x.permute(1, 0, 2)) else: x, attention = blk(x) z.append(x.permute(1, 0, 2)) return x, attention, z class VisionTransformer(nn.Module): """Vision Transformer for CLIP. Args: input_resolution (int): The image size. patch_size (int): The patch size. width (int): The feature dimension. layers (int): The number of layers. heads (int): The number of attention heads. out_dim (int): The output dimension. fineturn (bool): Whether to fineturn the model. average_target (bool): Whether to average the target. """ def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int, finetune=False, average_targets: int = 1) -> None: super().__init__() self.input_resolution = input_resolution self.output_dim = output_dim self.conv1 = nn.Conv2d( in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) scale = width**-0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn( (input_resolution // patch_size)**2 + 1, width)) self.ln_pre = LayerNorm(width) self.transformer = Transformer(width, layers, heads) self.finetune = finetune if finetune is False: self.ln_post = LayerNorm(width) self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) self.average_targets = average_targets def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """Forward function.""" x = self.conv1(x) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] x = torch.cat([ self.class_embedding.to(x.dtype) + torch.zeros( x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x ], dim=1) # shape = [*, grid ** 2 + 1, width] x = x + self.positional_embedding.to(x.dtype) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND x, attention, z = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_post(x) if self.proj is not None: x = x @ self.proj return x, attention class CLIP(nn.Module): """CLIP. Args: embed_dim (int): The embedding dimension. image_resolution (int): The image size. vision_layers (int): The number of layers in the vision transformer. vision_width (int): The feature dimension in the vision transformer. vision_patch_size (int): The patch size in the vision transformer. context_length (int): The context length. vocab_size (int): The vocabulary size. transformer_width (int): The feature dimension in the text transformer. transformer_heads (int): The number of attention heads in the text transformer. transformer_layers (int): The number of layers in the text transformer. fineturn (bool): Whether to fineturn the model. average_target (bool): Whether to average the target. """ def __init__( self, embed_dim: int, image_resolution: int, vision_layers: Union[Tuple[int, int, int, int], int], vision_width: int, vision_patch_size: int, context_length: int, vocab_size: int, transformer_width: int, transformer_heads: int, transformer_layers: int, finetune: bool = False, average_targets: int = 1, ) -> None: super().__init__() self.context_length = context_length vision_heads = vision_width // 64 self.visual = VisionTransformer( input_resolution=image_resolution, patch_size=vision_patch_size, width=vision_width, layers=vision_layers, heads=vision_heads, output_dim=embed_dim, finetune=finetune, average_targets=average_targets, ) self.transformer = Transformer( width=transformer_width, layers=transformer_layers, heads=transformer_heads, attn_mask=self.build_attention_mask()) self.vocab_size = vocab_size self.token_embedding = nn.Embedding(vocab_size, transformer_width) self.positional_embedding = nn.Parameter( torch.empty(self.context_length, transformer_width)) self.ln_final = LayerNorm(transformer_width) self.text_projection = nn.Parameter( torch.empty(transformer_width, embed_dim)) self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) self.initialize_parameters() def initialize_parameters(self) -> None: """Initialize the parameters. The pretrained weight will override the initialized parameters by this function. """ nn.init.normal_(self.token_embedding.weight, std=0.02) nn.init.normal_(self.positional_embedding, std=0.01) proj_std = (self.transformer.width**-0.5) * ( (2 * self.transformer.layers)**-0.5) attn_std = self.transformer.width**-0.5 fc_std = (2 * self.transformer.width)**-0.5 for block in self.transformer.resblocks: nn.init.normal_(block.attn.in_proj_weight, std=attn_std) nn.init.normal_(block.attn.out_proj.weight, std=proj_std) nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) if self.text_projection is not None: nn.init.normal_( self.text_projection, std=self.transformer.width**-0.5) def build_attention_mask(self) -> torch.Tensor: """Build the attention mask.""" # lazily create causal attention mask, with full attention between the # vision tokens pytorch uses additive attention mask; fill with -inf mask = torch.empty(self.context_length, self.context_length) mask.fill_(float('-inf')) mask.triu_(1) # zero out the lower diagonal return mask @property def dtype(self) -> torch.dtype: """Get the dtype.""" return self.visual.conv1.weight.dtype def encode_image(self, image: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """Encode the image. Get the feature and attention mask from the last layer of the visual branch of CLIP. Args: image (torch.Tensor): The image tensor with shape NCHW. Returns: Tuple[torch.Tensor, torch.Tensor]: The feature and attention mask. """ return self.visual(image.type(self.dtype)) def build_clip_model(state_dict: dict, finetune: bool = False, average_targets: int = 1) -> nn.Module: """Build the CLIP model. Args: state_dict (dict): The pretrained state dict. finetune (bool): Whether to fineturn the model. average_targets (bool): Whether to average the target. Returns: nn.Module: The CLIP model. """ vit = 'visual.proj' in state_dict if vit: vision_width = state_dict['visual.conv1.weight'].shape[0] vision_layers = len([ k for k in state_dict.keys() if k.startswith('visual.') and k.endswith('.attn.in_proj_weight') ]) vision_patch_size = state_dict['visual.conv1.weight'].shape[-1] grid_size = round( (state_dict['visual.positional_embedding'].shape[0] - 1)**0.5) image_resolution = vision_patch_size * grid_size embed_dim = state_dict['text_projection'].shape[1] context_length = state_dict['positional_embedding'].shape[0] vocab_size = state_dict['token_embedding.weight'].shape[0] transformer_width = state_dict['ln_final.weight'].shape[0] transformer_heads = transformer_width // 64 transformer_layers = len( set( k.split('.')[2] for k in state_dict if k.startswith('transformer.resblocks'))) model = CLIP( embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size, context_length, vocab_size, transformer_width, transformer_heads, transformer_layers, finetune, average_targets, ) for key in ['input_resolution', 'context_length', 'vocab_size']: if key in state_dict: del state_dict[key] msg = model.load_state_dict(state_dict, strict=False) MMLogger.get_current_instance().info(f'Load CLIP model: {msg}') return model.eval()