# Copyright (c) OpenMMLab. All rights reserved. import warnings from typing import Optional, Tuple, Union import torch from torch.nn import functional as F def resize(input: torch.Tensor, size: Optional[Union[Tuple[int, int], torch.Size]] = None, scale_factor: Optional[float] = None, mode: str = 'nearest', align_corners: Optional[bool] = None, warning: bool = True) -> torch.Tensor: """Resize a given input tensor using specified size or scale_factor. Args: input (torch.Tensor): The input tensor to be resized. size (Optional[Union[Tuple[int, int], torch.Size]]): The desired output size. Defaults to None. scale_factor (Optional[float]): The scaling factor for resizing. Defaults to None. mode (str): The interpolation mode. Defaults to 'nearest'. align_corners (Optional[bool]): Determines whether to align the corners when using certain interpolation modes. Defaults to None. warning (bool): Whether to display a warning when the input and output sizes are not ideal for alignment. Defaults to True. Returns: torch.Tensor: The resized tensor. """ # Check if a warning should be displayed regarding input and output sizes if warning: if size is not None and align_corners: input_h, input_w = tuple(int(x) for x in input.shape[2:]) output_h, output_w = tuple(int(x) for x in size) if output_h > input_h or output_w > output_h: if ((output_h > 1 and output_w > 1 and input_h > 1 and input_w > 1) and (output_h - 1) % (input_h - 1) and (output_w - 1) % (input_w - 1)): warnings.warn( f'When align_corners={align_corners}, ' 'the output would be more aligned if ' f'input size {(input_h, input_w)} is `x+1` and ' f'out size {(output_h, output_w)} is `nx+1`') # Convert torch.Size to tuple if necessary if isinstance(size, torch.Size): size = tuple(int(x) for x in size) # Perform the resizing operation return F.interpolate(input, size, scale_factor, mode, align_corners)