File size: 5,265 Bytes
9acaed2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 51,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate\n",
    "from langchain.llms import OpenAI\n",
    "from langchain.chat_models import ChatOpenAI\n",
    "\n",
    "from langchain.output_parsers import PydanticOutputParser\n",
    "from pydantic import BaseModel, Field, validator\n",
    "from typing import List"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 52,
   "metadata": {},
   "outputs": [],
   "source": [
    "model_name = 'text-davinci-003'\n",
    "temperature = 0.7\n",
    "model = OpenAI(model_name=model_name, temperature=temperature)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 53,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define your desired data structure.\n",
    "class Joke(BaseModel):\n",
    "    setup: str = Field(description=\"question to set up a joke\")\n",
    "    punchline: str = Field(description=\"answer to resolve the joke\")\n",
    "    \n",
    "    # You can add custom validation logic easily with Pydantic.\n",
    "    @validator('setup')\n",
    "    def question_ends_with_question_mark(cls, field):\n",
    "        if field[-1] != '?' and field[-1] != '?':\n",
    "            raise ValueError(\"Badly formed question!\")\n",
    "        return field"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 54,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Set up a parser + inject instructions into the prompt template.\n",
    "parser = PydanticOutputParser(pydantic_object=Joke)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 55,
   "metadata": {},
   "outputs": [],
   "source": [
    "prompt = PromptTemplate(\n",
    "    template=\"Answer the user query.\\n{format_instructions}\\n{query}\\n\",\n",
    "    input_variables=[\"query\"],\n",
    "    partial_variables={\"format_instructions\": parser.get_format_instructions()}\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 56,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "prompt: text='Answer the user query.\\nThe output should be formatted as a JSON instance that conforms to the JSON schema below.\\n\\nAs an example, for the schema {\"properties\": {\"foo\": {\"title\": \"Foo\", \"description\": \"a list of strings\", \"type\": \"array\", \"items\": {\"type\": \"string\"}}}, \"required\": [\"foo\"]}}\\nthe object {\"foo\": [\"bar\", \"baz\"]} is a well-formatted instance of the schema. The object {\"properties\": {\"foo\": [\"bar\", \"baz\"]}} is not well-formatted.\\n\\nHere is the output schema:\\n```\\n{\"properties\": {\"setup\": {\"title\": \"Setup\", \"description\": \"question to set up a joke\", \"type\": \"string\"}, \"punchline\": {\"title\": \"Punchline\", \"description\": \"answer to resolve the joke\", \"type\": \"string\"}}, \"required\": [\"setup\", \"punchline\"]}\\n```\\n用中文回答,讲个笑话。\\n'\n"
     ]
    }
   ],
   "source": [
    "# And a query intented to prompt a language model to populate the data structure.\n",
    "joke_query = \"用中文回答,讲个笑话。\"\n",
    "_input = prompt.format_prompt(query=joke_query)\n",
    "print(\"prompt:\", _input)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 57,
   "metadata": {},
   "outputs": [],
   "source": [
    "output = model(_input.to_string())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 80,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0 setup='为什么大象不喜欢穿衣服?' punchline='因为衣服太小!'\n",
      "1 setup='为什么乌龟不能唱歌?' punchline='因为它没有嗓子!'\n",
      "2 setup='什么东西可以排列成一半?' punchline='一个鸡蛋!'\n",
      "3 setup='为什么老虎不吃素?' punchline='因为他不能把萝卜拔得出土。'\n",
      "4 setup='什么植物可以在水里生长?' punchline='水芹菜!'\n",
      "5 setup='什么可以把一只老虎变成猫?' punchline='把它放进冰箱!'\n",
      "6 setup='为什么恐龙不能坐飞机?' punchline='因为它没有票!'\n",
      "7 setup='为什么熊总喜欢去森林游玩?' punchline='因为他想要一个熊朋友!'\n",
      "8 setup='什么东西可以把一座山搬走?' punchline='风'\n",
      "9 setup='为什么有些人把面包放进微波炉里?' punchline='因为他们想把它变成“烤面包”。'\n"
     ]
    }
   ],
   "source": [
    "for i in range(10):\n",
    "    output = model(_input.to_string())\n",
    "    print(i, parser.parse(output))"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "base",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.10"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}