File size: 5,523 Bytes
9acaed2
 
 
 
ebe91e9
9acaed2
 
 
 
 
 
 
 
 
 
 
 
 
 
ebe91e9
9acaed2
 
 
 
 
 
 
 
 
 
ebe91e9
9acaed2
 
 
 
 
 
 
 
 
 
 
ebe91e9
 
9acaed2
 
 
 
 
 
 
ebe91e9
9acaed2
 
 
 
 
 
 
 
 
ebe91e9
9acaed2
 
 
 
 
 
 
 
 
 
 
 
ebe91e9
9acaed2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebe91e9
9acaed2
 
 
 
 
 
 
 
ebe91e9
9acaed2
 
 
 
 
 
ebe91e9
 
 
 
 
 
 
 
 
 
9acaed2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate\n",
    "from langchain.llms import OpenAI\n",
    "from langchain.chat_models import ChatOpenAI\n",
    "\n",
    "from langchain.output_parsers import PydanticOutputParser\n",
    "from pydantic import BaseModel, Field, validator\n",
    "from typing import List"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "model_name = 'text-davinci-003'\n",
    "temperature = 0.7\n",
    "model = OpenAI(model_name=model_name, temperature=temperature)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define your desired data structure.\n",
    "class Joke(BaseModel):\n",
    "    setup: str = Field(description=\"question to set up a joke\")\n",
    "    punchline: str = Field(description=\"answer to resolve the joke\")\n",
    "    \n",
    "    # You can add custom validation logic easily with Pydantic.\n",
    "    @validator('setup')\n",
    "    def question_ends_with_question_mark(cls, field):\n",
    "        # 如果是中文,这里需要判断中文问号和英文问号。否则这里会抛出ValueError。\n",
    "        # if field[-1] != '?' and field[-1] != '?':\n",
    "        if field[-1] != '?' and field[-1] != '?':\n",
    "            raise ValueError(\"Badly formed question!\")\n",
    "        return field"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Set up a parser + inject instructions into the prompt template.\n",
    "parser = PydanticOutputParser(pydantic_object=Joke)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "prompt = PromptTemplate(\n",
    "    template=\"Answer the user query.\\n{format_instructions}\\n{query}\\n\",\n",
    "    input_variables=[\"query\"],\n",
    "    partial_variables={\"format_instructions\": parser.get_format_instructions()}\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "prompt: text='Answer the user query.\\nThe output should be formatted as a JSON instance that conforms to the JSON schema below.\\n\\nAs an example, for the schema {\"properties\": {\"foo\": {\"title\": \"Foo\", \"description\": \"a list of strings\", \"type\": \"array\", \"items\": {\"type\": \"string\"}}}, \"required\": [\"foo\"]}}\\nthe object {\"foo\": [\"bar\", \"baz\"]} is a well-formatted instance of the schema. The object {\"properties\": {\"foo\": [\"bar\", \"baz\"]}} is not well-formatted.\\n\\nHere is the output schema:\\n```\\n{\"properties\": {\"setup\": {\"title\": \"Setup\", \"description\": \"question to set up a joke\", \"type\": \"string\"}, \"punchline\": {\"title\": \"Punchline\", \"description\": \"answer to resolve the joke\", \"type\": \"string\"}}, \"required\": [\"setup\", \"punchline\"]}\\n```\\n用中文回答,讲个笑话。\\n'\n"
     ]
    }
   ],
   "source": [
    "# And a query intented to prompt a language model to populate the data structure.\n",
    "joke_query = \"用中文回答,讲个笑话。\"\n",
    "_input = prompt.format_prompt(query=joke_query)\n",
    "print(\"prompt:\", _input)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "output = model(_input.to_string())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0 setup='为什么山羊爱上蜜蜂?' punchline='因为它们都喜欢花蜜!'\n",
      "1 setup='为什么鸡蛋不能上树?' punchline='因为它们太害怕摔下来会摔碎!'\n",
      "2 setup='为什么海洋里的鱼不会发烧?' punchline='因为它们住在温度常定的水里!'\n",
      "3 setup='为什么老鼠喜欢住在洞里?' punchline=\"因为它们可以说:'我家有钥匙!'\"\n",
      "4 setup='为什么火车总是不让狗上车?' punchline='因为它们没有票!'\n",
      "5 setup='为什么小明总是迟到?' punchline='因为他睡得太晚。'\n",
      "6 setup='为什么狐狸不喜欢吃草?' punchline='因为它害怕被牛发现!'\n",
      "7 setup='什么东西很长却没有腿?' punchline='一条彩虹!'\n",
      "8 setup='为什么老虎不吃素食?' punchline='因为他不喜欢蔬菜!'\n",
      "9 setup='为什么小明每次考试都不及格?' punchline='因为他总是把“考”理解成“糊弄”。'\n"
     ]
    }
   ],
   "source": [
    "for i in range(10):\n",
    "    output = model(_input.to_string())\n",
    "    print(i, parser.parse(output))"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "base",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.10"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}