File size: 3,130 Bytes
d7ed536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 52,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.output_parsers import StructuredOutputParser, ResponseSchema\n",
    "from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate\n",
    "from langchain.llms import OpenAI\n",
    "from langchain.chat_models import ChatOpenAI"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 53,
   "metadata": {},
   "outputs": [],
   "source": [
    "response_schemas = [\n",
    "    ResponseSchema(name=\"answer\", description=\"answer to the user's question\"),\n",
    "    ResponseSchema(name=\"source\", description=\"source used to answer the user's question, should be a website.\")\n",
    "]\n",
    "output_parser = StructuredOutputParser.from_response_schemas(response_schemas)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 54,
   "metadata": {},
   "outputs": [],
   "source": [
    "format_instructions = output_parser.get_format_instructions()\n",
    "prompt = PromptTemplate(\n",
    "    template=\"answer the users question as best as possible.\\n{format_instructions}\\n{question}\",\n",
    "    input_variables=[\"question\"],\n",
    "    partial_variables={\"format_instructions\": format_instructions}\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 55,
   "metadata": {},
   "outputs": [],
   "source": [
    "model = OpenAI(temperature=0, n=2, best_of=2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 56,
   "metadata": {},
   "outputs": [],
   "source": [
    "_input = prompt.format_prompt(question=\"ๅ‘จๆฐไผฆๆœ‰ๅ“ชไบ›ๆญŒ๏ผŸ\")\n",
    "output = model(_input.to_string())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 57,
   "metadata": {},
   "outputs": [],
   "source": [
    "# output_parser.parse(output)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 58,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'answer': 'ๅ‘จๆฐไผฆ็š„ๆญŒๆ›ฒๆœ‰ใ€Š็จป้ฆ™ใ€‹ใ€ใ€Šๅ‘ๅฆ‚้›ชใ€‹ใ€ใ€Š้’่Šฑ็“ทใ€‹ใ€ใ€Šไธƒ้‡Œ้ฆ™ใ€‹ใ€ใ€Š็ฎ€ๅ•็ˆฑใ€‹ใ€ใ€Š็ญ‰ไฝ ไธ‹่ฏพใ€‹ใ€ใ€Š่Š่Šฑๅฐใ€‹ใ€ใ€Šๅคœๆ›ฒใ€‹ใ€ใ€Šไธ่ƒฝ่ฏด็š„็ง˜ๅฏ†ใ€‹ใ€ใ€Šๅ›žๅˆฐ่ฟ‡ๅŽปใ€‹็ญ‰ใ€‚',\n",
       " 'source': '็™พๅบฆ็™พ็ง‘ https://baike.baidu.com/item/%E5%91%A8%E6%9D%B0%E4%BC%A6/109983'}"
      ]
     },
     "execution_count": 58,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from langchain.output_parsers import OutputFixingParser\n",
    "new_parser = OutputFixingParser.from_llm(parser=output_parser, llm=OpenAI())\n",
    "new_parser.parse(output)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "base",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.10"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}