Spaces:
Runtime error
Runtime error
File size: 2,997 Bytes
d7ed536 ebe91e9 d7ed536 ebe91e9 d7ed536 ebe91e9 d7ed536 ebe91e9 d7ed536 ebe91e9 d7ed536 ebe91e9 d7ed536 ebe91e9 d7ed536 ebe91e9 d7ed536 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate\n",
"from langchain.llms import OpenAI\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.output_parsers import PydanticOutputParser\n",
"from pydantic import BaseModel, Field, validator\n",
"from typing import List"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"class Actor(BaseModel):\n",
" name: str = Field(description=\"name of an actor\")\n",
" film_names: List[str] = Field(description=\"list of names of films they starred in\")\n",
" \n",
"actor_query = \"Generate the filmography for a random actor.\"\n",
"\n",
"parser = PydanticOutputParser(pydantic_object=Actor)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"misformatted = \"{'name': \\\"Tom Hanks\\\", \\\"film_names\\\": [\\\"Forrest Gump\\\"]}\""
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# 将报解析错误。\n",
"# parser.parse(misformatted)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"from langchain.output_parsers import OutputFixingParser\n",
"\n",
"new_parser = OutputFixingParser.from_llm(parser=parser, llm=OpenAI())"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Actor(name='Tom Hanks', film_names=['Forrest Gump'])"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"new_parser.parse(misformatted)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Actor(name='Tom Hanks', film_names=['Forrest Gump', 'Saving Private Ryan'])"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# test_str = '{\"name\": \"Tom Hanks\", \"film_names\": [\"Forrest Gump\"]}'\n",
"test_str = '{\"name\": \"Tom Hanks\"}'\n",
"# parser.parse(test_str)\n",
"\n",
"new_parser.parse(test_str)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.10"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|