Spaces:
Runtime error
Runtime error
File size: 5,933 Bytes
85a770f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import OpenAI, Anthropic\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.callbacks.base import CallbackManager\n",
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
"from langchain.schema import HumanMessage\n",
"from langchain.callbacks.base import BaseCallbackHandler\n",
"import sys\n",
"from typing import Any, Dict, List, Union\n",
"from langchain.schema import AgentAction, AgentFinish, LLMResult"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"class PrintCallbackHandler(BaseCallbackHandler):\n",
" \"\"\"Callback handler for streaming. Only works with LLMs that support streaming.\"\"\"\n",
"\n",
" def on_llm_start(\n",
" self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any\n",
" ) -> None:\n",
" \"\"\"Run when LLM starts running.\"\"\"\n",
" print(\"on_llm_start\")\n",
"\n",
" def on_llm_new_token(self, token: str, **kwargs: Any) -> None:\n",
" \"\"\"Run on new LLM token. Only available when streaming is enabled.\"\"\"\n",
" sys.stdout.write(token)\n",
" sys.stdout.flush()\n",
"\n",
" def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:\n",
" \"\"\"Run when LLM ends running.\"\"\"\n",
" print(\"\\non_llm_end\")\n",
"\n",
" def on_llm_error(\n",
" self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any\n",
" ) -> None:\n",
" \"\"\"Run when LLM errors.\"\"\"\n",
"\n",
" def on_chain_start(\n",
" self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any\n",
" ) -> None:\n",
" \"\"\"Run when chain starts running.\"\"\"\n",
" print(\"on_chain_start\")\n",
"\n",
" def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:\n",
" \"\"\"Run when chain ends running.\"\"\"\n",
" print(\"on_chain_end\")\n",
"\n",
" def on_chain_error(\n",
" self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any\n",
" ) -> None:\n",
" \"\"\"Run when chain errors.\"\"\"\n",
"\n",
" def on_tool_start(\n",
" self, serialized: Dict[str, Any], input_str: str, **kwargs: Any\n",
" ) -> None:\n",
" \"\"\"Run when tool starts running.\"\"\"\n",
" print(\"on_tool_start\")\n",
"\n",
" def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:\n",
" \"\"\"Run on agent action.\"\"\"\n",
" pass\n",
"\n",
" def on_tool_end(self, output: str, **kwargs: Any) -> None:\n",
" \"\"\"Run when tool ends running.\"\"\"\n",
"\n",
" def on_tool_error(\n",
" self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any\n",
" ) -> None:\n",
" \"\"\"Run when tool errors.\"\"\"\n",
"\n",
" def on_text(self, text: str, **kwargs: Any) -> None:\n",
" \"\"\"Run on arbitrary text.\"\"\"\n",
" print(\"on_text\")\n",
"\n",
" def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:\n",
" \"\"\"Run on agent end.\"\"\"\n",
" print(\"on_agent_finish\")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"on_llm_start\n",
"\n",
"\n",
"每当我想起你 \n",
"心里总是满满的温柔 \n",
"每当我想起你 \n",
"总是有一种特别的感觉 \n",
"\n",
"每当我想起你 \n",
"总是有一种深深的思念 \n",
"每当我想起你 \n",
"总是有一种温暖的感觉 \n",
"\n",
"每当我想起你 \n",
"总是有一种温柔的爱 \n",
"每当我想起你 \n",
"总是有一种深深的情感 \n",
"\n",
"每当我想起你 \n",
"总是有一种温暖的温柔 \n",
"每当我想起你 \n",
"总是有一种特别的感动\n",
"on_llm_end\n"
]
}
],
"source": [
"# or use StreamingStdOutCallbackHandler\n",
"llm = OpenAI(max_tokens=1024, streaming=True, callback_manager=CallbackManager([PrintCallbackHandler()]), verbose=True, temperature=0)\n",
"resp = llm(\"仿写一份周杰伦的歌词\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"on_llm_start\n",
"\n",
"\n",
"Q: What did the fish say when it hit the wall?\n",
"A: Dam!on_llm_end\n"
]
},
{
"data": {
"text/plain": [
"LLMResult(generations=[[Generation(text='\\n\\nQ: What did the fish say when it hit the wall?\\nA: Dam!', generation_info={'finish_reason': 'stop', 'logprobs': None})]], llm_output={'token_usage': {}, 'model_name': 'text-davinci-003'})"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm.generate([\"Tell me a joke.\"])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|