File size: 5,933 Bytes
85a770f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.llms import OpenAI, Anthropic\n",
    "from langchain.chat_models import ChatOpenAI\n",
    "from langchain.callbacks.base import CallbackManager\n",
    "from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
    "from langchain.schema import HumanMessage\n",
    "from langchain.callbacks.base import BaseCallbackHandler\n",
    "import sys\n",
    "from typing import Any, Dict, List, Union\n",
    "from langchain.schema import AgentAction, AgentFinish, LLMResult"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "class PrintCallbackHandler(BaseCallbackHandler):\n",
    "    \"\"\"Callback handler for streaming. Only works with LLMs that support streaming.\"\"\"\n",
    "\n",
    "    def on_llm_start(\n",
    "        self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any\n",
    "    ) -> None:\n",
    "        \"\"\"Run when LLM starts running.\"\"\"\n",
    "        print(\"on_llm_start\")\n",
    "\n",
    "    def on_llm_new_token(self, token: str, **kwargs: Any) -> None:\n",
    "        \"\"\"Run on new LLM token. Only available when streaming is enabled.\"\"\"\n",
    "        sys.stdout.write(token)\n",
    "        sys.stdout.flush()\n",
    "\n",
    "    def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:\n",
    "        \"\"\"Run when LLM ends running.\"\"\"\n",
    "        print(\"\\non_llm_end\")\n",
    "\n",
    "    def on_llm_error(\n",
    "        self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any\n",
    "    ) -> None:\n",
    "        \"\"\"Run when LLM errors.\"\"\"\n",
    "\n",
    "    def on_chain_start(\n",
    "        self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any\n",
    "    ) -> None:\n",
    "        \"\"\"Run when chain starts running.\"\"\"\n",
    "        print(\"on_chain_start\")\n",
    "\n",
    "    def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:\n",
    "        \"\"\"Run when chain ends running.\"\"\"\n",
    "        print(\"on_chain_end\")\n",
    "\n",
    "    def on_chain_error(\n",
    "        self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any\n",
    "    ) -> None:\n",
    "        \"\"\"Run when chain errors.\"\"\"\n",
    "\n",
    "    def on_tool_start(\n",
    "        self, serialized: Dict[str, Any], input_str: str, **kwargs: Any\n",
    "    ) -> None:\n",
    "        \"\"\"Run when tool starts running.\"\"\"\n",
    "        print(\"on_tool_start\")\n",
    "\n",
    "    def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:\n",
    "        \"\"\"Run on agent action.\"\"\"\n",
    "        pass\n",
    "\n",
    "    def on_tool_end(self, output: str, **kwargs: Any) -> None:\n",
    "        \"\"\"Run when tool ends running.\"\"\"\n",
    "\n",
    "    def on_tool_error(\n",
    "        self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any\n",
    "    ) -> None:\n",
    "        \"\"\"Run when tool errors.\"\"\"\n",
    "\n",
    "    def on_text(self, text: str, **kwargs: Any) -> None:\n",
    "        \"\"\"Run on arbitrary text.\"\"\"\n",
    "        print(\"on_text\")\n",
    "\n",
    "    def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:\n",
    "        \"\"\"Run on agent end.\"\"\"\n",
    "        print(\"on_agent_finish\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "on_llm_start\n",
      "\n",
      "\n",
      "每当我想起你 \n",
      "心里总是满满的温柔 \n",
      "每当我想起你 \n",
      "总是有一种特别的感觉 \n",
      "\n",
      "每当我想起你 \n",
      "总是有一种深深的思念 \n",
      "每当我想起你 \n",
      "总是有一种温暖的感觉 \n",
      "\n",
      "每当我想起你 \n",
      "总是有一种温柔的爱 \n",
      "每当我想起你 \n",
      "总是有一种深深的情感 \n",
      "\n",
      "每当我想起你 \n",
      "总是有一种温暖的温柔 \n",
      "每当我想起你 \n",
      "总是有一种特别的感动\n",
      "on_llm_end\n"
     ]
    }
   ],
   "source": [
    "# or use StreamingStdOutCallbackHandler\n",
    "llm = OpenAI(max_tokens=1024, streaming=True, callback_manager=CallbackManager([PrintCallbackHandler()]), verbose=True, temperature=0)\n",
    "resp = llm(\"仿写一份周杰伦的歌词\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "on_llm_start\n",
      "\n",
      "\n",
      "Q: What did the fish say when it hit the wall?\n",
      "A: Dam!on_llm_end\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "LLMResult(generations=[[Generation(text='\\n\\nQ: What did the fish say when it hit the wall?\\nA: Dam!', generation_info={'finish_reason': 'stop', 'logprobs': None})]], llm_output={'token_usage': {}, 'model_name': 'text-davinci-003'})"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "llm.generate([\"Tell me a joke.\"])"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.3"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}