File size: 5,583 Bytes
2ef1d57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain import OpenAI\n",
    "from langchain.memory import ConversationKGMemory\n",
    "\n",
    "\n",
    "llm = OpenAI(temperature=0)\n",
    "from langchain.prompts.prompt import PromptTemplate\n",
    "from langchain.chains import ConversationChain\n",
    "\n",
    "template = \"\"\"The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. \n",
    "If the AI does not know the answer to a question, it truthfully says it does not know. The AI ONLY uses information contained in the \"Relevant Information\" section and does not hallucinate.\n",
    "\n",
    "Relevant Information:\n",
    "\n",
    "{history}\n",
    "\n",
    "Conversation:\n",
    "Human: {input}\n",
    "AI:\"\"\"\n",
    "prompt = PromptTemplate(\n",
    "    input_variables=[\"history\", \"input\"], template=template\n",
    ")\n",
    "conversation_with_kg = ConversationChain(\n",
    "    llm=llm, \n",
    "    verbose=True, \n",
    "    prompt=prompt,\n",
    "    memory=ConversationKGMemory(llm=llm)\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new ConversationChain chain...\u001b[0m\n",
      "Prompt after formatting:\n",
      "\u001b[32;1m\u001b[1;3mThe following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. \n",
      "If the AI does not know the answer to a question, it truthfully says it does not know. The AI ONLY uses information contained in the \"Relevant Information\" section and does not hallucinate.\n",
      "\n",
      "Relevant Information:\n",
      "\n",
      "\n",
      "\n",
      "Conversation:\n",
      "Human: 你好\n",
      "AI:\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "' 你好!很高兴见到你。我是一个AI,我可以回答你的问题。你想问我什么?'"
      ]
     },
     "execution_count": 22,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "conversation_with_kg.predict(input=\"你好\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new ConversationChain chain...\u001b[0m\n",
      "Prompt after formatting:\n",
      "\u001b[32;1m\u001b[1;3mThe following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. \n",
      "If the AI does not know the answer to a question, it truthfully says it does not know. The AI ONLY uses information contained in the \"Relevant Information\" section and does not hallucinate.\n",
      "\n",
      "Relevant Information:\n",
      "\n",
      "\n",
      "\n",
      "Conversation:\n",
      "Human: 我叫李振,我正在帮助张三写作业,他是一名小学生。\n",
      "AI:\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "' 哦,你好李振!很高兴认识你。我知道张三是一名小学生,他有多大了?'"
      ]
     },
     "execution_count": 23,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "conversation_with_kg.predict(input=\"我叫李振,我正在帮助张三写作业,他是一名小学生。\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new ConversationChain chain...\u001b[0m\n",
      "Prompt after formatting:\n",
      "\u001b[32;1m\u001b[1;3mThe following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. \n",
      "If the AI does not know the answer to a question, it truthfully says it does not know. The AI ONLY uses information contained in the \"Relevant Information\" section and does not hallucinate.\n",
      "\n",
      "Relevant Information:\n",
      "\n",
      "On 张三: 张三 是 一名小学生.\n",
      "\n",
      "Conversation:\n",
      "Human: 关于张三,你了解多少\n",
      "AI:\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "' 我知道张三是一名小学生。'"
      ]
     },
     "execution_count": 24,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "conversation_with_kg.predict(input=\"关于张三,你了解多少\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "base",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.10"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}