{ "cells": [ { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [], "source": [ "from langchain.output_parsers import StructuredOutputParser, ResponseSchema\n", "from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate\n", "from langchain.llms import OpenAI\n", "from langchain.chat_models import ChatOpenAI" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [], "source": [ "response_schemas = [\n", " ResponseSchema(name=\"answer\", description=\"answer to the user's question\"),\n", " ResponseSchema(name=\"source\", description=\"source used to answer the user's question, should be a website.\")\n", "]\n", "output_parser = StructuredOutputParser.from_response_schemas(response_schemas)" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [], "source": [ "format_instructions = output_parser.get_format_instructions()\n", "prompt = PromptTemplate(\n", " template=\"answer the users question as best as possible.\\n{format_instructions}\\n{question}\",\n", " input_variables=[\"question\"],\n", " partial_variables={\"format_instructions\": format_instructions}\n", ")" ] }, { "cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [], "source": [ "model = OpenAI(temperature=0, n=2, best_of=2)" ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [], "source": [ "_input = prompt.format_prompt(question=\"周杰伦有哪些歌?\")\n", "output = model(_input.to_string())" ] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [], "source": [ "# output_parser.parse(output)" ] }, { "cell_type": "code", "execution_count": 58, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'answer': '周杰伦的歌曲有《稻香》、《发如雪》、《青花瓷》、《七里香》、《简单爱》、《等你下课》、《菊花台》、《夜曲》、《不能说的秘密》、《回到过去》等。',\n", " 'source': '百度百科 https://baike.baidu.com/item/%E5%91%A8%E6%9D%B0%E4%BC%A6/109983'}" ] }, "execution_count": 58, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from langchain.output_parsers import OutputFixingParser\n", "new_parser = OutputFixingParser.from_llm(parser=output_parser, llm=OpenAI())\n", "new_parser.parse(output)" ] } ], "metadata": { "kernelspec": { "display_name": "base", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.10" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }