upload files
Browse files- Dockerfile +3 -2
- app.py +386 -142
- requirements.txt +7 -4
Dockerfile
CHANGED
@@ -8,6 +8,7 @@ RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
|
8 |
|
9 |
COPY . .
|
10 |
|
11 |
-
EXPOSE
|
|
|
|
|
12 |
|
13 |
-
CMD ["shiny", "run", "app.py", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
8 |
|
9 |
COPY . .
|
10 |
|
11 |
+
EXPOSE 8000
|
12 |
+
|
13 |
+
CMD ["python", "app.py"]
|
14 |
|
|
app.py
CHANGED
@@ -1,162 +1,406 @@
|
|
1 |
-
|
2 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
# Load
|
5 |
-
|
6 |
-
from shinywidgets import render_plotly
|
7 |
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
max=bill_rng[1],
|
22 |
-
value=bill_rng,
|
23 |
-
pre="$",
|
24 |
-
)
|
25 |
-
ui.input_checkbox_group(
|
26 |
-
"time",
|
27 |
-
"Food service",
|
28 |
-
["Lunch", "Dinner"],
|
29 |
-
selected=["Lunch", "Dinner"],
|
30 |
-
inline=True,
|
31 |
-
)
|
32 |
-
ui.input_action_button("reset", "Reset filter")
|
33 |
-
|
34 |
-
# Add main content
|
35 |
-
ICONS = {
|
36 |
-
"user": fa.icon_svg("user", "regular"),
|
37 |
-
"wallet": fa.icon_svg("wallet"),
|
38 |
-
"currency-dollar": fa.icon_svg("dollar-sign"),
|
39 |
-
"ellipsis": fa.icon_svg("ellipsis"),
|
40 |
-
}
|
41 |
-
|
42 |
-
with ui.layout_columns(fill=False):
|
43 |
-
with ui.value_box(showcase=ICONS["user"]):
|
44 |
-
"Total tippers"
|
45 |
-
|
46 |
-
@render.express
|
47 |
-
def total_tippers():
|
48 |
-
tips_data().shape[0]
|
49 |
-
|
50 |
-
with ui.value_box(showcase=ICONS["wallet"]):
|
51 |
-
"Average tip"
|
52 |
-
|
53 |
-
@render.express
|
54 |
-
def average_tip():
|
55 |
-
d = tips_data()
|
56 |
-
if d.shape[0] > 0:
|
57 |
-
perc = d.tip / d.total_bill
|
58 |
-
f"{perc.mean():.1%}"
|
59 |
-
|
60 |
-
with ui.value_box(showcase=ICONS["currency-dollar"]):
|
61 |
-
"Average bill"
|
62 |
-
|
63 |
-
@render.express
|
64 |
-
def average_bill():
|
65 |
-
d = tips_data()
|
66 |
-
if d.shape[0] > 0:
|
67 |
-
bill = d.total_bill.mean()
|
68 |
-
f"${bill:.2f}"
|
69 |
-
|
70 |
-
|
71 |
-
with ui.layout_columns(col_widths=[6, 6, 12]):
|
72 |
-
with ui.card(full_screen=True):
|
73 |
-
ui.card_header("Tips data")
|
74 |
-
|
75 |
-
@render.data_frame
|
76 |
-
def table():
|
77 |
-
return render.DataGrid(tips_data())
|
78 |
-
|
79 |
-
with ui.card(full_screen=True):
|
80 |
-
with ui.card_header(class_="d-flex justify-content-between align-items-center"):
|
81 |
-
"Total bill vs tip"
|
82 |
-
with ui.popover(title="Add a color variable", placement="top"):
|
83 |
-
ICONS["ellipsis"]
|
84 |
-
ui.input_radio_buttons(
|
85 |
-
"scatter_color",
|
86 |
-
None,
|
87 |
-
["none", "sex", "smoker", "day", "time"],
|
88 |
-
inline=True,
|
89 |
-
)
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
return px.scatter(
|
95 |
-
tips_data(),
|
96 |
-
x="total_bill",
|
97 |
-
y="tip",
|
98 |
-
color=None if color == "none" else color,
|
99 |
-
trendline="lowess",
|
100 |
-
)
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
-
|
116 |
-
def tip_perc():
|
117 |
-
from ridgeplot import ridgeplot
|
118 |
-
|
119 |
-
dat = tips_data()
|
120 |
-
dat["percent"] = dat.tip / dat.total_bill
|
121 |
-
yvar = input.tip_perc_y()
|
122 |
-
uvals = dat[yvar].unique()
|
123 |
|
124 |
-
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
colorscale="viridis",
|
131 |
-
colormode="row-index",
|
132 |
-
)
|
133 |
|
134 |
-
|
135 |
-
legend=dict(
|
136 |
-
orientation="h", yanchor="bottom", y=1.02, xanchor="center", x=0.5
|
137 |
-
)
|
138 |
-
)
|
139 |
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
|
|
142 |
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
-
#
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
|
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
ui.update_checkbox_group("time", selected=["Lunch", "Dinner"])
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
from rcsbsearchapi import TextQuery, AttributeQuery, Query
|
3 |
+
from rcsbsearchapi.search import Sort, SequenceQuery
|
4 |
+
import os
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
from shiny import App, render, ui, reactive
|
7 |
+
import pandas as pd
|
8 |
+
import warnings
|
9 |
+
import re
|
10 |
+
from UniprotKB_P_Sequence_RCSB_API_test import ProteinQuery, ProteinSearchEngine
|
11 |
+
import plotly.graph_objects as go
|
12 |
+
from shinywidgets import output_widget, render_widget
|
13 |
+
warnings.filterwarnings('ignore')
|
14 |
|
15 |
+
# Load environment variables from .env file
|
16 |
+
load_dotenv()
|
|
|
17 |
|
18 |
+
class PDBSearchAssistant:
|
19 |
+
def __init__(self, model_name="google/flan-t5-large"):
|
20 |
+
# Set up HuggingFace pipeline with better model
|
21 |
+
self.pipe = pipeline(
|
22 |
+
"text2text-generation",
|
23 |
+
model=model_name,
|
24 |
+
max_new_tokens=512,
|
25 |
+
temperature=0.3,
|
26 |
+
torch_dtype="auto",
|
27 |
+
device="cpu"
|
28 |
+
)
|
29 |
+
|
30 |
+
self.prompt_template = """
|
31 |
+
Extract specific search parameters from the query, if present:
|
32 |
+
1. Resolution cutoff (in Γ
)
|
33 |
+
2. Sequence information
|
34 |
+
3. Specific PDB ID
|
35 |
+
4. Experimental method (X-RAY, EM, NMR)
|
36 |
|
37 |
+
Format:
|
38 |
+
Resolution: [maximum resolution in Γ
, if mentioned]
|
39 |
+
Sequence: [any sequence mentioned]
|
40 |
+
PDB_ID: [specific PDB ID if mentioned]
|
41 |
+
Method: [experimental method if mentioned]
|
42 |
|
43 |
+
Examples:
|
44 |
+
Query: "Find X-ray structures better than 2.5Γ
resolution"
|
45 |
+
Resolution: 2.5
|
46 |
+
Sequence: none
|
47 |
+
PDB_ID: none
|
48 |
+
Method: X-RAY
|
49 |
|
50 |
+
Query: "Show me NMR structures of kinases"
|
51 |
+
Resolution: none
|
52 |
+
Sequence: none
|
53 |
+
PDB_ID: none
|
54 |
+
Method: NMR
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
Now analyze:
|
57 |
+
Query: {query}
|
58 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
def search_pdb(self, query):
|
61 |
+
try:
|
62 |
+
# Get search parameters from LLM
|
63 |
+
formatted_prompt = self.prompt_template.format(query=query)
|
64 |
+
response = self.pipe(formatted_prompt)[0]['generated_text']
|
65 |
+
print("Generated parameters:", response)
|
66 |
+
|
67 |
+
# Parse LLM response
|
68 |
+
resolution_limit = None
|
69 |
+
pdb_id = None
|
70 |
+
sequence = None
|
71 |
+
method = None
|
72 |
+
has_resolution_query = False
|
73 |
+
resolution_direction = "less"
|
74 |
+
|
75 |
+
# Check if query contains resolution-related terms
|
76 |
+
resolution_terms = {
|
77 |
+
'better': 'less',
|
78 |
+
'best': 'less',
|
79 |
+
'highest': 'less',
|
80 |
+
'good': 'less',
|
81 |
+
'fine': 'less',
|
82 |
+
'worse': 'greater',
|
83 |
+
'worst': 'greater',
|
84 |
+
'lowest': 'greater',
|
85 |
+
'poor': 'greater',
|
86 |
+
'resolution': None,
|
87 |
+
'Γ₯': None,
|
88 |
+
'angstrom': None,
|
89 |
+
'than': None,
|
90 |
+
'under': 'less',
|
91 |
+
'below': 'less',
|
92 |
+
'above': 'greater',
|
93 |
+
'over': 'greater'
|
94 |
+
}
|
95 |
+
|
96 |
+
# Check if the original query mentions resolution
|
97 |
+
query_lower = query.lower()
|
98 |
+
|
99 |
+
# Determine resolution direction from query
|
100 |
+
for term, direction in resolution_terms.items():
|
101 |
+
if term in query_lower:
|
102 |
+
has_resolution_query = True
|
103 |
+
if direction: # if not None
|
104 |
+
resolution_direction = direction
|
105 |
+
|
106 |
+
# Also check for numerical values with Γ
|
107 |
+
if re.search(r'\d+\.?\d*\s*Γ₯?', query_lower):
|
108 |
+
has_resolution_query = True
|
109 |
+
|
110 |
+
# Clean and parse LLM response
|
111 |
+
for line in response.split('\n'):
|
112 |
+
if 'Resolution:' in line:
|
113 |
+
value = line.split('Resolution:')[1].strip()
|
114 |
+
if value.lower() not in ['none', 'n/a'] and has_resolution_query:
|
115 |
+
try:
|
116 |
+
# Extract just the number
|
117 |
+
res_value = ''.join(c for c in value if c.isdigit() or c == '.')
|
118 |
+
resolution_limit = float(res_value)
|
119 |
+
except ValueError:
|
120 |
+
pass
|
121 |
+
elif 'Method:' in line:
|
122 |
+
value = line.split('Method:')[1].strip()
|
123 |
+
if value.lower() not in ['none', 'n/a']:
|
124 |
+
method = value.upper()
|
125 |
+
elif 'Sequence:' in line:
|
126 |
+
value = line.split('Sequence:')[1].strip()
|
127 |
+
if value.lower() not in ['none', 'n/a']:
|
128 |
+
sequence = value
|
129 |
+
elif 'PDB_ID:' in line:
|
130 |
+
value = line.split('PDB_ID:')[1].strip()
|
131 |
+
if value.lower() not in ['none', 'n/a']:
|
132 |
+
pdb_id = value
|
133 |
+
|
134 |
+
# Build search query
|
135 |
+
queries = []
|
136 |
+
|
137 |
+
# Check if the query contains a protein sequence pattern
|
138 |
+
# Check for amino acid sequence (minimum 25 residues)
|
139 |
+
query_words = query.split()
|
140 |
+
for word in query_words:
|
141 |
+
# Check if the word consists of valid amino acid letters
|
142 |
+
if (len(word) >= 25 and # minimum 25 residues requirement
|
143 |
+
all(c in 'ACDEFGHIKLMNPQRSTVWY' for c in word.upper()) and
|
144 |
+
sum(c.isupper() for c in word) / len(word) > 0.8):
|
145 |
+
sequence = word
|
146 |
+
break
|
147 |
+
|
148 |
+
# If sequence is found, use SequenceQuery
|
149 |
+
if sequence:
|
150 |
+
if len(sequence) < 25:
|
151 |
+
print("Warning: Sequence must be at least 25 residues long. Skipping sequence search.")
|
152 |
+
sequence = None
|
153 |
+
else:
|
154 |
+
print(f"Adding sequence search with identity 100% for sequence: {sequence}")
|
155 |
+
sequence_query = SequenceQuery(
|
156 |
+
sequence,
|
157 |
+
identity_cutoff=1.0, # 100% identity
|
158 |
+
evalue_cutoff=1,
|
159 |
+
sequence_type="protein"
|
160 |
+
)
|
161 |
+
queries.append(sequence_query)
|
162 |
+
# If no sequence, proceed with text search
|
163 |
+
else:
|
164 |
+
# Clean the original query and add text search
|
165 |
+
clean_query = query.lower()
|
166 |
+
|
167 |
+
# Remove resolution numbers and terms if they exist
|
168 |
+
if has_resolution_query:
|
169 |
+
clean_query = re.sub(r'\d+\.?\d*\s*Γ₯?', '', clean_query)
|
170 |
+
for term in resolution_terms:
|
171 |
+
clean_query = clean_query.replace(term, '')
|
172 |
+
|
173 |
+
# Clean up extra spaces and trim
|
174 |
+
clean_query = ' '.join(clean_query.split())
|
175 |
+
|
176 |
+
print("Cleaned query:", clean_query)
|
177 |
+
|
178 |
+
# Add text search if query is not empty
|
179 |
+
if clean_query.strip():
|
180 |
+
text_query = AttributeQuery(
|
181 |
+
attribute="struct.title",
|
182 |
+
operator="contains_phrase",
|
183 |
+
value=clean_query
|
184 |
+
)
|
185 |
+
queries.append(text_query)
|
186 |
+
|
187 |
+
# Add resolution filter if specified
|
188 |
+
if resolution_limit and has_resolution_query:
|
189 |
+
operator = "less_or_equal" if resolution_direction == "less" else "greater_or_equal"
|
190 |
+
print(f"Adding resolution filter: {operator} {resolution_limit}Γ
")
|
191 |
+
resolution_query = AttributeQuery(
|
192 |
+
attribute="rcsb_entry_info.resolution_combined",
|
193 |
+
operator=operator,
|
194 |
+
value=resolution_limit
|
195 |
)
|
196 |
+
queries.append(resolution_query)
|
197 |
+
|
198 |
+
# Add PDB ID search if specified
|
199 |
+
if pdb_id:
|
200 |
+
print(f"Searching for specific PDB ID: {pdb_id}")
|
201 |
+
id_query = AttributeQuery(
|
202 |
+
attribute="rcsb_id",
|
203 |
+
operator="exact_match",
|
204 |
+
value=pdb_id.upper()
|
205 |
+
)
|
206 |
+
queries = [id_query] # Override other queries for direct PDB ID search
|
207 |
+
|
208 |
+
# Add experimental method filter if specified
|
209 |
+
if method:
|
210 |
+
print(f"Adding experimental method filter: {method}")
|
211 |
+
method_query = AttributeQuery(
|
212 |
+
attribute="exptl.method",
|
213 |
+
operator="exact_match",
|
214 |
+
value=method
|
215 |
+
)
|
216 |
+
queries.append(method_query)
|
217 |
+
|
218 |
+
# Combine queries with AND operator
|
219 |
+
if queries:
|
220 |
+
final_query = queries[0]
|
221 |
+
for q in queries[1:]:
|
222 |
+
final_query = final_query & q
|
223 |
+
|
224 |
+
print("Final query:", final_query)
|
225 |
+
|
226 |
+
# Execute search
|
227 |
+
session = final_query.exec()
|
228 |
+
results = []
|
229 |
+
|
230 |
+
# Process results safely with additional information
|
231 |
+
try:
|
232 |
+
for entry in session:
|
233 |
+
# Handle both string and object types
|
234 |
+
if isinstance(entry, str):
|
235 |
+
result = {
|
236 |
+
'PDB ID': entry
|
237 |
+
}
|
238 |
+
else:
|
239 |
+
# Handle object type
|
240 |
+
result = {
|
241 |
+
'PDB ID': entry.identifier
|
242 |
+
}
|
243 |
+
|
244 |
+
results.append(result)
|
245 |
+
except Exception as e:
|
246 |
+
print(f"Error processing results: {str(e)}")
|
247 |
+
# If error occurs during processing, at least return PDB IDs
|
248 |
+
if isinstance(entry, str):
|
249 |
+
results.append({'PDB ID': entry})
|
250 |
+
|
251 |
+
print(f"Found {len(results)} structures")
|
252 |
+
return results
|
253 |
+
|
254 |
+
return []
|
255 |
+
|
256 |
+
except Exception as e:
|
257 |
+
print(f"Error during search: {str(e)}")
|
258 |
+
print(f"Error type: {type(e)}")
|
259 |
+
return []
|
260 |
|
261 |
+
def pdbsummary(name):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
+
search_engine = ProteinSearchEngine()
|
264 |
|
265 |
+
query = ProteinQuery(
|
266 |
+
name,
|
267 |
+
max_resolution= 5.0
|
268 |
+
)
|
|
|
|
|
|
|
269 |
|
270 |
+
results = search_engine.search(query)
|
|
|
|
|
|
|
|
|
271 |
|
272 |
+
answer = ""
|
273 |
+
for i, structure in enumerate(results, 1):
|
274 |
+
answer += f"\n{i}. PDB ID : {structure.pdb_id}\n"
|
275 |
+
answer += f"\nResolution : {structure.resolution:.2f} A \n"
|
276 |
+
answer += f"Method : {structure.method}\n Title : {structure.title}\n"
|
277 |
+
answer += f"Release Date : {structure.release_date}\n Sequence length: {len(structure.sequence)} aa\n"
|
278 |
+
answer += f" Sequence:\n {structure.sequence}\n"
|
279 |
|
280 |
+
return answer
|
281 |
|
282 |
+
def create_interactive_table(df):
|
283 |
+
if df.empty:
|
284 |
+
return go.Figure()
|
285 |
+
|
286 |
+
# Create interactive table
|
287 |
+
table = go.Figure(data=[go.Table(
|
288 |
+
header=dict(
|
289 |
+
values=list(df.columns),
|
290 |
+
fill_color='paleturquoise',
|
291 |
+
align='left',
|
292 |
+
font=dict(size=14),
|
293 |
+
),
|
294 |
+
cells=dict(
|
295 |
+
values=[df[col] for col in df.columns],
|
296 |
+
align='left',
|
297 |
+
font=dict(size=13),
|
298 |
+
height=30
|
299 |
+
),
|
300 |
+
columnwidth=[len(str(max(df[col], key=len))) for col in df.columns]
|
301 |
+
)])
|
302 |
+
|
303 |
+
# Update table layout
|
304 |
+
table.update_layout(
|
305 |
+
margin=dict(l=0, r=0, t=0, b=0),
|
306 |
+
height=400,
|
307 |
+
autosize=True
|
308 |
+
)
|
309 |
+
|
310 |
+
return table
|
311 |
|
312 |
+
# Simplified Shiny app UI definition
|
313 |
+
app_ui = ui.page_fluid(
|
314 |
+
ui.tags.head(
|
315 |
+
ui.tags.style("""
|
316 |
+
.table a {
|
317 |
+
color: #0d6efd;
|
318 |
+
text-decoration: none;
|
319 |
+
}
|
320 |
+
.table a:hover {
|
321 |
+
color: #0a58ca;
|
322 |
+
text-decoration: underline;
|
323 |
+
}
|
324 |
+
""")
|
325 |
+
),
|
326 |
+
ui.h2("Advanced PDB Structure Search Tool"),
|
327 |
+
ui.row(
|
328 |
+
ui.column(12,
|
329 |
+
ui.input_text("query", "Search Query",
|
330 |
+
value="Human insulin"),
|
331 |
+
)
|
332 |
+
),
|
333 |
+
ui.row(
|
334 |
+
ui.column(12,
|
335 |
+
ui.p("Example queries:"),
|
336 |
+
ui.tags.ul(
|
337 |
+
ui.tags.li("Human hemoglobin C resolution better than 2.5Γ
"),
|
338 |
+
ui.tags.li("Find structures containing sequence MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSELDKAIGRNTNGVITKDEAEKLFNQDVDAAVRGILRNAKLKPVYDSLDAVRRAALINMVFQMGETGVAGFTNSLRMLQQKRWDEAAVNLAKSRWYNQTPNRAKRVITTFRTGTWDAYKNL"),
|
339 |
|
340 |
+
),
|
341 |
+
)
|
342 |
+
),
|
343 |
+
ui.row(
|
344 |
+
ui.column(12,
|
345 |
+
ui.input_action_button("search", "Search", class_="btn-primary"),
|
346 |
+
)
|
347 |
+
),
|
348 |
+
ui.row(
|
349 |
+
ui.column(12,
|
350 |
+
ui.h4("Search Parameters:"),
|
351 |
+
ui.output_text("search_conditions"),
|
352 |
+
)
|
353 |
+
),
|
354 |
+
ui.row(
|
355 |
+
ui.column(12,
|
356 |
+
ui.h4("Top 10 Results:"),
|
357 |
+
output_widget("results_table"),
|
358 |
+
ui.download_button("download", "Download Results")
|
359 |
+
)
|
360 |
+
)
|
361 |
+
)
|
362 |
|
363 |
+
def server(input, output, session):
|
364 |
+
assistant = PDBSearchAssistant()
|
365 |
+
results_store = reactive.Value([])
|
366 |
+
|
367 |
+
@reactive.Effect
|
368 |
+
@reactive.event(input.search)
|
369 |
+
def _():
|
370 |
+
results = assistant.search_pdb(query=input.query())
|
371 |
+
results_store.set(results)
|
372 |
+
|
373 |
+
# Convert results to DataFrame and add hyperlinks
|
374 |
+
df = pd.DataFrame(results)
|
375 |
+
if not df.empty:
|
376 |
+
df['PDB ID'] = df['PDB ID'].apply(
|
377 |
+
lambda x: f'<a href="https://www.rcsb.org/3d-view/{x}" target="_blank">{x}</a>'
|
378 |
+
)
|
379 |
+
|
380 |
+
@output
|
381 |
+
@render_widget
|
382 |
+
def results_table():
|
383 |
+
return create_interactive_table(df) # id μμΌλ‘ μ λ ¬λλκ±°μΈλ― Top rank μμ μλ
|
384 |
+
|
385 |
+
@output
|
386 |
+
@render.text
|
387 |
+
def search_conditions():
|
388 |
+
results = results_store.get()
|
389 |
+
return f"""
|
390 |
+
Applied Search Conditions:
|
391 |
+
- Query: {input.query()}
|
392 |
+
- Total structures found: {len(results)}
|
393 |
+
"""
|
394 |
+
|
395 |
+
@output
|
396 |
+
@render.download(filename="pdb_search_results.csv")
|
397 |
+
def download():
|
398 |
+
df = pd.DataFrame(results_store.get())
|
399 |
+
return df.to_csv(index=False)
|
400 |
|
401 |
+
app = App(app_ui, server)
|
402 |
|
403 |
+
if __name__ == "__main__":
|
404 |
+
import nest_asyncio
|
405 |
+
nest_asyncio.apply()
|
406 |
+
app.run(port=8000)
|
|
requirements.txt
CHANGED
@@ -1,6 +1,9 @@
|
|
1 |
-
|
|
|
|
|
2 |
shiny
|
3 |
-
shinywidgets
|
4 |
-
plotly
|
5 |
pandas
|
6 |
-
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
rcsbsearchapi
|
3 |
+
python-dotenv
|
4 |
shiny
|
|
|
|
|
5 |
pandas
|
6 |
+
plotly
|
7 |
+
shinywidgets
|
8 |
+
nest-asyncio
|
9 |
+
torch
|