jerryjliu commited on
Commit
0cc2205
Β·
1 Parent(s): 5e8c4c6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +109 -2
README.md CHANGED
@@ -1,10 +1,117 @@
1
  ---
2
  title: README
3
- emoji: πŸƒ
4
  colorFrom: yellow
5
  colorTo: purple
6
  sdk: static
7
  pinned: false
8
  ---
9
 
10
- Edit this `README.md` markdown file to author your organization card πŸ”₯
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  title: README
3
+ emoji: πŸ¦™
4
  colorFrom: yellow
5
  colorTo: purple
6
  sdk: static
7
  pinned: false
8
  ---
9
 
10
+
11
+ # πŸ—‚οΈ LlamaIndex πŸ¦™ (GPT Index)
12
+
13
+ LlamaIndex (GPT Index) is a project that provides a central interface to connect your LLM's with external data.
14
+
15
+ PyPi:
16
+ - LlamaIndex: https://pypi.org/project/llama-index/.
17
+ - GPT Index (duplicate): https://pypi.org/project/gpt-index/.
18
+
19
+ Documentation: https://gpt-index.readthedocs.io/en/latest/.
20
+
21
+ Twitter: https://twitter.com/gpt_index.
22
+
23
+ Discord: https://discord.gg/dGcwcsnxhU.
24
+
25
+ LlamaHub (community library of data loaders): https://llamahub.ai
26
+
27
+ ## πŸš€ Overview
28
+
29
+ **NOTE**: This README is not updated as frequently as the documentation. Please check out the documentation above for the latest updates!
30
+
31
+ ### Context
32
+ - LLMs are a phenomenonal piece of technology for knowledge generation and reasoning. They are pre-trained on large amounts of publicly available data.
33
+ - How do we best augment LLMs with our own private data?
34
+ - One paradigm that has emerged is *in-context* learning (the other is finetuning), where we insert context into the input prompt. That way,
35
+ we take advantage of the LLM's reasoning capabilities to generate a response.
36
+
37
+ To perform LLM's data augmentation in a performant, efficient, and cheap manner, we need to solve two components:
38
+ - Data Ingestion
39
+ - Data Indexing
40
+
41
+ ### Proposed Solution
42
+
43
+ That's where the **LlamaIndex** comes in. LlamaIndex is a simple, flexible interface between your external data and LLMs. It provides the following tools in an easy-to-use fashion:
44
+
45
+ - Offers **data connectors** to your existing data sources and data formats (API's, PDF's, docs, SQL, etc.)
46
+ - Provides **indices** over your unstructured and structured data for use with LLM's.
47
+ These indices help to abstract away common boilerplate and pain points for in-context learning:
48
+ - Storing context in an easy-to-access format for prompt insertion.
49
+ - Dealing with prompt limitations (e.g. 4096 tokens for Davinci) when context is too big.
50
+ - Dealing with text splitting.
51
+ - Provides users an interface to **query** the index (feed in an input prompt) and obtain a knowledge-augmented output.
52
+ - Offers you a comprehensive toolset trading off cost and performance.
53
+
54
+
55
+ ## πŸ’‘ Contributing
56
+
57
+ Interesting in contributing? See our [Contribution Guide](CONTRIBUTING.md) for more details.
58
+
59
+ ## πŸ“„ Documentation
60
+
61
+ Full documentation can be found here: https://gpt-index.readthedocs.io/en/latest/.
62
+
63
+ Please check it out for the most up-to-date tutorials, how-to guides, references, and other resources!
64
+
65
+
66
+ ## πŸ’» Example Usage
67
+
68
+ ```
69
+ pip install llama-index
70
+ ```
71
+
72
+ Examples are in the `examples` folder. Indices are in the `indices` folder (see list of indices below).
73
+
74
+ To build a simple vector store index:
75
+ ```python
76
+ import os
77
+ os.environ["OPENAI_API_KEY"] = 'YOUR_OPENAI_API_KEY'
78
+
79
+ from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader
80
+ documents = SimpleDirectoryReader('data').load_data()
81
+ index = GPTSimpleVectorIndex.from_documents(documents)
82
+ ```
83
+
84
+ To save to and load from disk:
85
+ ```python
86
+ # save to disk
87
+ index.save_to_disk('index.json')
88
+ # load from disk
89
+ index = GPTSimpleVectorIndex.load_from_disk('index.json')
90
+ ```
91
+
92
+ To query:
93
+ ```python
94
+ index.query("<question_text>?")
95
+ ```
96
+
97
+ ## πŸ”§ Dependencies
98
+
99
+ The main third-party package requirements are `tiktoken`, `openai`, and `langchain`.
100
+
101
+ All requirements should be contained within the `setup.py` file. To run the package locally without building the wheel, simply run `pip install -r requirements.txt`.
102
+
103
+
104
+ ## πŸ“– Citation
105
+
106
+ Reference to cite if you use LlamaIndex in a paper:
107
+
108
+ ```
109
+ @software{Liu_LlamaIndex_2022,
110
+ author = {Liu, Jerry},
111
+ doi = {10.5281/zenodo.1234},
112
+ month = {11},
113
+ title = {{LlamaIndex}},
114
+ url = {https://github.com/jerryjliu/gpt_index},
115
+ year = {2022}
116
+ }
117
+ ```