Spaces:
Runtime error
Runtime error
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"AWQ (Activation aware Weight Quantization) integration file" | |
from ..activations import ACT2FN | |
from ..modeling_utils import PreTrainedModel | |
from ..utils import is_auto_awq_available, is_torch_available | |
from ..utils.quantization_config import AwqBackendPackingMethod, AwqConfig, AWQLinearVersion | |
if is_torch_available(): | |
import torch | |
import torch.nn as nn | |
AWQ_FUSED_MAPPINGS = { | |
"mistral": { | |
"attention": ["q_proj", "k_proj", "v_proj", "o_proj"], | |
"mlp": ["gate_proj", "up_proj", "down_proj"], | |
"layernorm": ["input_layernorm", "post_attention_layernorm", "norm"], | |
"use_alibi": False, | |
}, | |
"llama": { | |
"attention": ["q_proj", "k_proj", "v_proj", "o_proj"], | |
"mlp": ["gate_proj", "up_proj", "down_proj"], | |
"layernorm": ["input_layernorm", "post_attention_layernorm", "norm"], | |
"use_alibi": False, | |
}, | |
} | |
def replace_with_awq_linear( | |
model, | |
modules_to_not_convert=None, | |
quantization_config=None, | |
current_key_name=None, | |
has_been_replaced=False, | |
) -> bool: | |
""" | |
Public method that recursively replaces the Linear layers of the given model with AWQ quantized layers. | |
`accelerate` is needed to use this method. Returns the converted model and a boolean that indicates if the | |
conversion has been successfull or not. | |
During the module replacement, we also infer the backend to use through the `quantization_config` object. | |
Args: | |
model (`torch.nn.Module`): | |
The model to convert, can be any `torch.nn.Module` instance. | |
quantization_config (`AwqConfig`): | |
The quantization config object that contains the quantization parameters. | |
modules_to_not_convert (`list`, *optional*): | |
A list of modules to not convert. If a module name is in the list (e.g. `lm_head`), it will not be | |
converted. | |
current_key_name (`list`, *optional*): | |
A list that contains the current key name. This is used for recursion and should not be passed by the user. | |
has_been_replaced (`bool`, *optional*): | |
A boolean that indicates if the conversion has been successful or not. This is used for recursion and | |
should not be passed by the user. | |
""" | |
if modules_to_not_convert is None: | |
modules_to_not_convert = [] | |
backend = quantization_config.backend | |
if not is_auto_awq_available(): | |
raise ValueError( | |
"AWQ (either `autoawq` or `llmawq`) is not available. Please install it with `pip install autoawq` or check out the installation guide in https://github.com/mit-han-lab/llm-awq" | |
) | |
if backend == AwqBackendPackingMethod.AUTOAWQ: | |
from awq.modules.linear import WQLinear_GEMM, WQLinear_GEMV | |
elif backend == AwqBackendPackingMethod.LLMAWQ: | |
from awq.quantize.qmodule import WQLinear | |
if backend == AwqBackendPackingMethod.AUTOAWQ: | |
target_cls = WQLinear_GEMM if quantization_config.version == AWQLinearVersion.GEMM else WQLinear_GEMV | |
else: | |
target_cls = WQLinear | |
for name, module in model.named_children(): | |
if current_key_name is None: | |
current_key_name = [] | |
current_key_name.append(name) | |
if isinstance(module, nn.Linear) and name not in modules_to_not_convert: | |
# Check if the current key is not in the `modules_to_not_convert` | |
if not any(key in ".".join(current_key_name) for key in modules_to_not_convert): | |
in_features = module.in_features | |
out_features = module.out_features | |
model._modules[name] = target_cls( | |
w_bit=quantization_config.bits, | |
group_size=quantization_config.group_size, | |
in_features=in_features, | |
out_features=out_features, | |
bias=module.bias is not None, | |
dev=module.weight.device, | |
) | |
has_been_replaced = True | |
# Force requires grad to False to avoid unexpected errors | |
model._modules[name].requires_grad_(False) | |
if len(list(module.children())) > 0: | |
_, has_been_replaced = replace_with_awq_linear( | |
module, | |
modules_to_not_convert=modules_to_not_convert, | |
current_key_name=current_key_name, | |
quantization_config=quantization_config, | |
has_been_replaced=has_been_replaced, | |
) | |
# Remove the last key for recursion | |
current_key_name.pop(-1) | |
return model, has_been_replaced | |
def get_modules_to_fuse(model, quantization_config): | |
""" | |
Returns the fusing mapping given the quantization config and the model | |
Args: | |
model (`~PreTrainedModel`): | |
The model to fuse - note this model should have been converted into AWQ format beforehand. | |
quantization_config (`~transformers.quantization_config.AWQConfig`): | |
The quantization configuration to use. | |
""" | |
if not isinstance(model, PreTrainedModel): | |
raise ValueError(f"The model should be an instance of `PreTrainedModel`, got {model.__class__.__name__}") | |
# Always default to `quantization_config.modules_to_fuse` | |
if quantization_config.modules_to_fuse is not None: | |
current_fused_mapping = quantization_config.modules_to_fuse | |
current_fused_mapping["max_seq_len"] = quantization_config.fuse_max_seq_len | |
elif model.config.model_type in AWQ_FUSED_MAPPINGS: | |
current_fused_mapping = AWQ_FUSED_MAPPINGS[model.config.model_type] | |
# Handle hidden_size, num_attention_heads, num_key_value_heads on our own. | |
hidden_size = model.config.hidden_size | |
num_attention_heads = model.config.num_attention_heads | |
num_key_value_heads = getattr(model.config, "num_key_value_heads", num_attention_heads) | |
# Fill `current_fused_mapping` with the expected values | |
current_fused_mapping["hidden_size"] = hidden_size | |
current_fused_mapping["num_attention_heads"] = num_attention_heads | |
current_fused_mapping["num_key_value_heads"] = num_key_value_heads | |
current_fused_mapping["max_seq_len"] = quantization_config.fuse_max_seq_len | |
else: | |
raise ValueError( | |
"Fusing mapping not found either on the quantization config or the supported `AWQ_FUSED_MAPPINGS`. Please pass a `fused_mapping` argument" | |
" in the `quantization_config` or raise an issue on transformers https://github.com/huggingface/transformers to add its support." | |
) | |
return current_fused_mapping | |
def fuse_awq_modules(model, quantization_config): | |
""" | |
Optionally fuse some modules in the model to speedup inference. | |
Args: | |
model (`~PreTrainedModel`): | |
The model to fuse - note this model should have been converted into AWQ format beforehand. | |
quantization_config (`dict`): | |
The quantization configuration to use. | |
""" | |
# We need to convert it from dict in order to get an AwqConfig object | |
# otherwise the fields `backend` etc. will not be available | |
# https://github.com/huggingface/transformers/pull/27411#discussion_r1414044495 | |
awq_config = AwqConfig.from_dict(quantization_config) | |
backend = awq_config.backend | |
modules_to_fuse = get_modules_to_fuse(model, awq_config) | |
if backend == AwqBackendPackingMethod.AUTOAWQ: | |
from awq.modules.fused.attn import QuantAttentionFused | |
from awq.modules.fused.mlp import QuantFusedMLP | |
from awq.modules.fused.norm import FasterTransformerRMSNorm | |
else: | |
raise ValueError("Fusing is only supported for the AutoAWQ backend") | |
for name, module in model.named_modules(): | |
# Replace layer norms | |
_fuse_awq_layernorm(modules_to_fuse["layernorm"], module, FasterTransformerRMSNorm) | |
# Replace MLP layers | |
_fuse_awq_mlp(model, name, modules_to_fuse["mlp"], module, QuantFusedMLP) | |
# Replace attention layers | |
_fuse_awq_attention_layers(model, module, modules_to_fuse, name, QuantAttentionFused) | |
return model | |
def _fuse_awq_layernorm(fuse_module_names, module, target_cls): | |
""" | |
Fuse the LayerNorm layers into a target class using autoawq | |
Args: | |
fuse_module_names (`List[str]`): | |
The list of module names to fuse | |
module (`nn.Module`): | |
The pytorch parent module that has layernorm modules to fuse | |
target_cls (`~autoawq.FasterTransformerRMSNorm`): | |
The `FasterTransformerRMSNorm` class as it only supports that class | |
for now. | |
""" | |
for module_name in fuse_module_names: | |
if hasattr(module, module_name): | |
old_module = getattr(module, module_name) | |
module._modules[module_name] = target_cls( | |
old_module.weight, | |
old_module.variance_epsilon, | |
).to(old_module.weight.device) | |
del old_module | |
def _fuse_awq_mlp(model, current_module_name, fuse_module_names, module, target_cls): | |
""" | |
Fuse the MLP layers into a target class using autoawq | |
Args: | |
model (`~PreTrainedModel`): | |
The input pretrained model | |
current_module_name (`str`): | |
The current submodule name | |
fuse_module_names (`List[str]`): | |
The list of module names to fuse. For the MLP layers it has to be an array | |
of length 3 that consists of the 3 MLP layers in the order (gate (dense layer post-attention) / up / down layers) | |
module (`nn.Module`): | |
The pytorch parent module that has layernorm modules to fuse | |
target_cls (`~autoawq.QuantFusedMLP`): | |
The `QuantFusedMLP` class as it only supports that class | |
for now. | |
""" | |
if len(fuse_module_names) == 0: | |
return | |
if hasattr(module, fuse_module_names[0]): | |
gate_proj = getattr(module, fuse_module_names[0]) | |
up_proj = getattr(module, fuse_module_names[1]) | |
down_proj = getattr(module, fuse_module_names[2]) | |
previous_device = gate_proj.qweight.device | |
activation_fn = ACT2FN[model.config.hidden_act] | |
new_module = target_cls(gate_proj, down_proj, up_proj, activation_fn) | |
parent_name, child_name = current_module_name.rsplit(".", 1) | |
parent = model.get_submodule(parent_name) | |
setattr(parent, child_name, new_module.to(previous_device)) | |
del gate_proj, up_proj, down_proj | |
def _fuse_awq_attention_layers(model, module, modules_to_fuse, current_module_name, target_cls): | |
""" | |
Fuse the Attention layers into a target class using autoawq | |
Args: | |
model (`~PreTrainedModel`): | |
The input pretrained model | |
module (`nn.Module`): | |
The pytorch parent module that has layernorm modules to fuse | |
modules_to_fuse (`List[str]`): | |
The module fusing mapping. The dictionary has to contain a field `attention` with attention module names | |
in the correct order: q, k, v, o layer | |
current_module_name (`str`): | |
The current submodule name | |
target_cls (`~autoawq.QuantAttentionFused`): | |
The `QuantAttentionFused` class as it only supports that class | |
for now. | |
""" | |
from awq.modules.linear import WQLinear_GEMM, WQLinear_GEMV | |
if len(modules_to_fuse["attention"]) == 0: | |
return | |
if hasattr(module, modules_to_fuse["attention"][0]): | |
# First, we pack the QKV layers together | |
q_proj = getattr(module, modules_to_fuse["attention"][0]) | |
previous_device = q_proj.qweight.device | |
if isinstance(q_proj, WQLinear_GEMV): | |
linear_target_cls = WQLinear_GEMV | |
cat_dim = 0 | |
elif isinstance(q_proj, WQLinear_GEMM): | |
linear_target_cls = WQLinear_GEMM | |
cat_dim = 1 | |
else: | |
raise ValueError("Unsupported q_proj type: {type(q_proj)}") | |
k_proj = getattr(module, modules_to_fuse["attention"][1]) | |
v_proj = getattr(module, modules_to_fuse["attention"][2]) | |
o_proj = getattr(module, modules_to_fuse["attention"][3]) | |
bias = torch.cat([q_proj.bias, k_proj.bias, v_proj.bias], dim=0) if q_proj.bias is not None else None | |
qkv_layer = linear_target_cls( | |
q_proj.w_bit, | |
q_proj.group_size, | |
q_proj.in_features, | |
q_proj.out_features + k_proj.out_features + v_proj.out_features, | |
q_proj.bias is not None, | |
next(iter(module.state_dict().values())).device, | |
) | |
qkv_layer.qweight = torch.cat([q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=cat_dim) | |
qkv_layer.qzeros = torch.cat([q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=cat_dim) | |
qkv_layer.scales = torch.cat([q_proj.scales, k_proj.scales, v_proj.scales], dim=cat_dim) | |
if isinstance(qkv_layer, WQLinear_GEMV): | |
qkv_layer.split_k_iters = q_proj.split_k_iters | |
qkv_layer.bias = bias | |
fused_attention_layer = target_cls( | |
modules_to_fuse["hidden_size"], | |
modules_to_fuse["num_attention_heads"], | |
modules_to_fuse["num_key_value_heads"], | |
qkv_layer, | |
o_proj, | |
previous_device, | |
modules_to_fuse["max_seq_len"], | |
use_alibi=modules_to_fuse["use_alibi"], | |
) | |
fused_attention_layer.is_hf_transformers = True | |
parent_name, child_name = current_module_name.rsplit(".", 1) | |
parent = model.get_submodule(parent_name) | |
setattr(parent, child_name, fused_attention_layer.to(previous_device)) | |
del q_proj, k_proj, v_proj, o_proj | |