File size: 23,991 Bytes
9123479
 
 
bf79ee8
 
 
9123479
bf79ee8
9123479
 
bf79ee8
9123479
 
62174a3
 
 
 
 
 
a83a6e5
 
 
 
 
 
 
 
 
9123479
 
 
a83a6e5
 
 
9123479
a83a6e5
bf79ee8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9123479
a83a6e5
bf79ee8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9123479
 
 
bf79ee8
9123479
 
 
 
 
bf79ee8
9123479
 
 
 
bf79ee8
9123479
 
 
 
a83a6e5
9123479
 
 
 
a83a6e5
 
9123479
a83a6e5
 
 
9123479
62174a3
9123479
 
 
 
 
 
 
 
 
 
 
 
62174a3
fcac78f
 
a83a6e5
 
 
fcac78f
9123479
62174a3
9123479
62174a3
 
 
 
 
 
9123479
 
62174a3
9123479
 
 
62174a3
 
fcac78f
 
 
9123479
fcac78f
62174a3
9123479
 
 
 
 
 
bf79ee8
 
9123479
f770b3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf79ee8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a83a6e5
bf79ee8
 
 
 
 
 
 
a83a6e5
bf79ee8
 
 
 
9123479
bf79ee8
 
a83a6e5
 
bf79ee8
 
 
 
fcac78f
bf79ee8
 
 
 
 
62174a3
bf79ee8
 
 
 
 
62174a3
bf79ee8
 
 
 
62174a3
bf79ee8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9123479
 
bf79ee8
 
 
 
 
 
 
 
 
9123479
bf79ee8
 
 
 
 
62174a3
bf79ee8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9123479
 
 
bf79ee8
9123479
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
import gradio as gr
import sys
import os
import random
import llm_blender
import descriptions
from datasets import load_dataset
from llm_blender.blender.blender_utils import get_topk_candidates_from_ranks
from typing import List


MAX_BASE_LLM_NUM = 20
MIN_BASE_LLM_NUM = 3
SOURCE_MAX_LENGTH = 256
DEFAULT_SOURCE_MAX_LENGTH = 128
CANDIDATE_MAX_LENGTH = 256
DEFAULT_CANDIDATE_MAX_LENGTH = 128
FUSER_MAX_NEW_TOKENS = 512
DEFAULT_FUSER_MAX_NEW_TOKENS = 256


# MIX-INSTRUCT
EXAMPLES_DATASET = load_dataset("llm-blender/mix-instruct", split='validation')
SHUFFLED_EXAMPLES_DATASET = EXAMPLES_DATASET.shuffle(seed=42)
MIX_INSTRUCT_EXAMPLES = []
CANDIDATE_MAP = {}
for i, example in enumerate(SHUFFLED_EXAMPLES_DATASET):
    MIX_INSTRUCT_EXAMPLES.append([
        example['instruction'],
        example['input'],
    ])
    CANDIDATE_MAP[example['instruction']+example['input']] = example['candidates']
    if i > 100:
        break

# HHH ALIGNMENT
HHH_EXAMPLES = []
subsets = ['harmless', 'helpful', 'honest', 'other']
random.seed(42)
for subset in subsets:
    dataset = load_dataset("HuggingFaceH4/hhh_alignment", subset)
    for example in dataset['test']:
        if random.random() < 0.5:
            HHH_EXAMPLES.append([
                subset,
                example['input'],
                example['targets']['choices'][0],
                example['targets']['choices'][1],
                "Response 1" if example['targets']['labels'][0] == 1 else "Response 2",
            ])
        else:
            HHH_EXAMPLES.append([
                subset,
                example['input'],
                example['targets']['choices'][1],
                example['targets']['choices'][0],
                "Response 2" if example['targets']['labels'][0] == 1 else "Response 1",
            ])
def get_hhh_examples(subset, instruction, response1, response2, dummy_text):
    return instruction, response1, response2

# MT_BENCH_HUMAN_JUDGMENTS
MT_BENCH_HUMAN_JUDGE_EXAMPLES = []
dataset = load_dataset("lmsys/mt_bench_human_judgments")
for example in dataset['human']:
    if example['turn'] != 1:
        continue
    MT_BENCH_HUMAN_JUDGE_EXAMPLES.append([
        example['model_a'],
        example['model_b'],
        str(example['conversation_a']),
        str(example['conversation_b']),
        "Model A" if example['winner'] == 'model_a' else "Model B",
    ])
def get_mt_bench_human_judge_examples(model_a, model_b, conversation_a, conversation_b, dummy_text):
    chat_history_a = []
    chat_history_b = []
    conversation_a = eval(conversation_a)
    conversation_b = eval(conversation_b)
    for i in range(0, len(conversation_a), 2):
        chat_history_a.append((conversation_a[i]['content'], conversation_a[i+1]['content']))
        assert conversation_a[i]['role'] == 'user' and conversation_a[i+1]['role'] == 'assistant'
    for i in range(0, len(conversation_b), 2):
        chat_history_b.append((conversation_b[i]['content'], conversation_b[i+1]['content']))
        assert conversation_b[i]['role'] == 'user' and conversation_b[i+1]['role'] == 'assistant'
    return chat_history_a, chat_history_b


blender = llm_blender.Blender()
blender.loadranker("llm-blender/PairRM")
blender.loadfuser("llm-blender/gen_fuser_3b")

def update_base_llms_num(k, llm_outputs):
    k = int(k)
    return [gr.Dropdown(choices=[f"LLM-{i+1}" for i in range(k)], 
        value=f"LLM-1" if k >= 1 else "", visible=True),
        {f"LLM-{i+1}": llm_outputs.get(f"LLM-{i+1}", "") for i in range(k)}]
    

def display_llm_output(llm_outputs, selected_base_llm_name):
    return gr.Textbox(value=llm_outputs.get(selected_base_llm_name, ""), 
        label=selected_base_llm_name + " (Click Save to save current content)", 
        placeholder=f"Enter {selected_base_llm_name} output here", show_label=True)

def save_llm_output(selected_base_llm_name, selected_base_llm_output, llm_outputs):
    llm_outputs({selected_base_llm_name: selected_base_llm_output})
    return llm_outputs

def get_preprocess_examples(inst, input):
    # get the num_of_base_llms
    candidates = CANDIDATE_MAP[inst+input]
    num_candiates = len(candidates)
    dummy_text = inst+input
    return inst, input, num_candiates, dummy_text

def update_base_llm_dropdown_along_examples(inst, input):
    candidates = CANDIDATE_MAP[inst+input]
    ex_llm_outputs = {f"LLM-{i+1}": candidates[i]['text'] for i in range(len(candidates))}
    k = len(candidates)
    return ex_llm_outputs, "", "", \
        gr.Dropdown(choices=[f"LLM-{i+1}" for i in range(k)], value=f"LLM-1" if k >= 1 else "", visible=True)
    
def check_save_ranker_inputs(inst, input, llm_outputs, blender_config):
    if not inst and not input:
        raise gr.Error("Please enter instruction or input context")
    
    if not all([x for x in llm_outputs.values()]):
        empty_llm_names = [llm_name for llm_name, llm_output in llm_outputs.items() if not llm_output]
        raise gr.Error("Please enter base LLM outputs for LLMs: {}").format(empty_llm_names)
    return {
        "inst": inst,
        "input": input,
        "candidates": list(llm_outputs.values()),
    }

def check_fuser_inputs(blender_state, blender_config, ranks):
    if "candidates" not in blender_state or len(ranks)==0:
        raise gr.Error("Please rank LLM outputs first")
    if not (blender_state.get("inst", None) or blender_state.get("input", None)):
        raise gr.Error("Please enter instruction or input context")
    
    return 

def llms_rank(inst, input, llm_outputs, blender_config):
    candidates = list(llm_outputs.values())
    rank_params = {
        "source_max_length": blender_config['source_max_length'],
        "candidate_max_length": blender_config['candidate_max_length'],
    }
    ranks = blender.rank(instructions=[inst], inputs=[input], candidates=[candidates])[0]
    return [ranks, ",  ".join([f"LLM-{i+1}: {rank}" for i, rank in enumerate(ranks)])]


def llms_fuse(blender_state, blender_config, ranks):
    inst = blender_state['inst']
    input = blender_state['input']
    candidates = blender_state['candidates']
    top_k_for_fuser = blender_config['top_k_for_fuser']
    fuse_params = blender_config.copy()
    fuse_params.pop("top_k_for_fuser")
    fuse_params.pop("source_max_length")
    fuse_params['no_repeat_ngram_size'] = 3
    top_k_candidates = get_topk_candidates_from_ranks([ranks], [candidates], top_k=top_k_for_fuser)[0]
    fuser_outputs = blender.fuse(instructions=[inst], inputs=[input], candidates=[top_k_candidates], **fuse_params, batch_size=1)[0]
    return [fuser_outputs, fuser_outputs]

def display_fuser_output(fuser_output):
    return fuser_output

        
with gr.Blocks(theme='ParityError/Anime') as demo:

    
    
    with gr.Tab("PairRM"):
        # PairRM interface
        with gr.Row():
            gr.Markdown(descriptions.PairRM_OVERALL_DESC)
            gr.Image("https://yuchenlin.xyz/LLM-Blender/pairranker.png")
        
        with gr.Tab("Compare two responses"):
            instruction = gr.Textbox(lines=1, label="Instruction", placeholder="Enter instruction here", show_label=True)
            with gr.Row():
                response1 = gr.Textbox(lines=4, label="Response 1", placeholder="Enter response 1 here", show_label=True)
                response2 = gr.Textbox(lines=4, label="Response 2", placeholder="Enter response 2 here", show_label=True)
            with gr.Row():
                compare_button = gr.Button('Compare', variant='primary')
                clear_button = gr.Button('Clear', variant='primary')
            with gr.Row():
                compare_result = gr.Textbox(lines=1, label="Compare Result", placeholder="", show_label=True)
                compare_result_prob = gr.Textbox(lines=1, label="PairRM Confidence", placeholder="", show_label=True)
            
            def compare_fn(inst, response1, response2):
                if not inst:
                    raise gr.Error("Please enter instruction")
                if not response1 or not response2:
                    raise gr.Error("Please enter response 1 and response 2")
                comparison_results = blender.compare([inst], [response1], [response2], return_logits=True)
                logit = comparison_results[0]
                if logit > 0:
                    result = "Response 1 is better than Response 2"
                    prob = f"Confidence: {round(logit, 2)}"
                elif logit < 0:
                    result = "Response 2 is better than Response 1"
                    prob = f"Cofidence: {round(abs(logit), 2)}"
                else:
                    result = "Response 1 and Response 2 are equally good"
                    prob = f"No confidence for tie"
                    
                return [result, prob]
            compare_button.click(
                fn=compare_fn,
                inputs=[instruction, response1, response2],
                outputs=[compare_result, compare_result_prob],
            )
            clear_button.click(
                fn=lambda: ["", ""],
                inputs=[],
                outputs=[compare_result, compare_result_prob],
            )
            
            hhh_dummy_textbox1 = gr.Textbox(lines=1, label="subset", placeholder="", show_label=False, visible=False)
            hhh_dummy_textbox2 = gr.Textbox(lines=1, label="Better Response", placeholder="", show_label=False, visible=False)
            gr.Markdown("## Examples from [HuggingFaceH4/hhh_alignment](https://huggingface.co/datasets/HuggingFaceH4/hhh_alignment)")
            gr.Examples(
                HHH_EXAMPLES,
                fn=get_hhh_examples,
                cache_examples=True,
                examples_per_page=5,
                inputs=[hhh_dummy_textbox1, instruction, response1, response2, hhh_dummy_textbox2],
                outputs=[instruction, response1, response2],
            )
                
            
        with gr.Tab("Compare assistant's response in two multi-turn conversations"):
            
            gr.Markdown("NOTE: Comparison of two conversations is based on that the user query in each turn is the same of two conversations.")
            def append_message(message, chat_history):
                if not message:
                    return "", chat_history
                if len(chat_history) == 0:
                    chat_history.append((message, "(Please enter your bot response)"))
                else:
                    if chat_history[-1][1] == "(Please enter your bot response)":
                        chat_history[-1] = (chat_history[-1][0], message)
                    else:
                        chat_history.append((message, "(Please enter your bot response)"))
                return "", chat_history
            with gr.Row():
                with gr.Column():
                    gr.Markdown("### Conversation A")
                    chatbot1 = gr.Chatbot()
                    msg1 = gr.Textbox(lines=1, label="Enter Chat history for Conversation A", placeholder="Enter your message here", show_label=True)
                    clear1 = gr.ClearButton([msg1, chatbot1])
                    msg1.submit(append_message, [msg1, chatbot1], [msg1, chatbot1])
                with gr.Column():    
                    gr.Markdown("### Conversation B")
                    chatbot2 = gr.Chatbot()
                    msg2 = gr.Textbox(lines=1, label="Enter Chat history for Conversation B", placeholder="Enter your message here", show_label=True)
                    clear2 = gr.ClearButton([msg2, chatbot2])
                    msg2.submit(append_message, [msg2, chatbot2], [msg2, chatbot2])
            with gr.Row():
                compare_button = gr.Button('Compare', variant='primary')
            with gr.Row():
                compare_result = gr.Textbox(lines=1, label="Compare Result", placeholder="", show_label=True)
                compare_result_prob = gr.Textbox(lines=1, label="PairRM Confidence", placeholder="", show_label=True)
            
            def compare_conv_fn(chat_history1, chat_history2):
                if len(chat_history1) == 0 or len(chat_history2) == 0:
                    raise gr.Error("Please enter chat history for both conversations")
                assert chat_history1[-1][1] != "(Please enter your bot response)" \
                    and chat_history2[-1][1] != "(Please enter your bot response)", \
                    "Please complete chat history for both conversations"
                chat1_messages = []
                for item in chat_history1:
                    chat1_messages.append({
                        "role": "USER",
                        "content": item[0],
                    })
                    chat1_messages.append({
                        "role": "ASSISTANT",
                        "content": item[1],
                    })
                chat2_messages = []
                for item in chat_history2:
                    chat2_messages.append({
                        "role": "USER",
                        "content": item[0],
                    })
                    chat2_messages.append({
                        "role": "ASSISTANT",
                        "content": item[1],
                    })
                                          
                comparison_results = blender.compare_conversations([chat1_messages], [chat2_messages], return_logits=True)
                logit = comparison_results[0]
                if logit > 0:
                    result = "Assistant's response in Conversation A is better than Conversation B"
                    prob = f"Confidence: {round(logit, 2)}"
                elif logit < 0:
                    result = "Assistant's response in Conversation B is better than Conversation A"
                    prob = f"Cofidence: {round(abs(logit), 2)}"
                else:
                    result = "Assistant's response in Conversation A and Conversation B are equally good"
                    prob = f"No confidence for tie"
                    
                return [result, prob]

            compare_button.click(
                fn=compare_conv_fn,
                inputs=[chatbot1, chatbot2],
                outputs=[compare_result, compare_result_prob],
            )
            
            model_a_dummy_textbox = gr.Textbox(lines=1, label="Model A", placeholder="", show_label=False, visible=False)
            model_b_dummy_textbox = gr.Textbox(lines=1, label="Model B", placeholder="", show_label=False, visible=False)
            winner_dummy_textbox = gr.Textbox(lines=1, label="Better Model in conversation", placeholder="", show_label=False, visible=False)
            chatbot1_dummy_textbox = gr.Textbox(lines=1, label="Conversation A", placeholder="", show_label=False, visible=False)
            chatbot2_dummy_textbox = gr.Textbox(lines=1, label="Conversation B", placeholder="", show_label=False, visible=False)
            gr.Markdown("## Examples from [lmsys/mt_bench_human_judgments](https://huggingface.co/datasets/lmsys/mt_bench_human_judgments)")
            gr.Examples(
                MT_BENCH_HUMAN_JUDGE_EXAMPLES,
                fn=get_mt_bench_human_judge_examples,
                cache_examples=True,
                examples_per_page=5,
                inputs=[model_a_dummy_textbox, model_b_dummy_textbox, chatbot1_dummy_textbox, chatbot2_dummy_textbox, winner_dummy_textbox],
                outputs=[chatbot1, chatbot2],
            )
    
    
    with gr.Tab("LLM-Blender"):
        # llm-blender interface 
        with gr.Row():
            gr.Markdown(descriptions.LLM_BLENDER_OVERALL_DESC)
            gr.Image("https://github.com/yuchenlin/LLM-Blender/blob/main/docs/llm_blender.png?raw=true", height=300)
        gr.Markdown("## Input and Base LLMs")
        with gr.Row():
            with gr.Column():
                inst_textbox = gr.Textbox(lines=1, label="Instruction", placeholder="Enter instruction here", show_label=True)
                input_textbox = gr.Textbox(lines=4, label="Input Context", placeholder="Enter input context here", show_label=True)
            with gr.Column():
                saved_llm_outputs = gr.State(value={})
                with gr.Group():
                    selected_base_llm_name_dropdown = gr.Dropdown(label="Base LLM",
                        choices=[f"LLM-{i+1}" for i in range(MIN_BASE_LLM_NUM)], value="LLM-1", show_label=True)
                    selected_base_llm_output = gr.Textbox(lines=4, label="LLM-1 (Click Save to save current content)",
                        placeholder="Enter LLM-1 output here", show_label=True)
                with gr.Row():
                    base_llm_outputs_save_button = gr.Button('Save', variant='primary')
                    
                    base_llm_outputs_clear_single_button = gr.Button('Clear Single', variant='primary')
                    
                    base_llm_outputs_clear_all_button = gr.Button('Clear All', variant='primary')
                base_llms_num = gr.Slider(
                        label='Number of base llms',
                        minimum=MIN_BASE_LLM_NUM,
                        maximum=MAX_BASE_LLM_NUM,
                        step=1,
                        value=MIN_BASE_LLM_NUM,
                    )
        
        blender_state = gr.State(value={})
        saved_rank_outputs = gr.State(value=[])
        saved_fuse_outputs = gr.State(value=[])
        gr.Markdown("## Blender Outputs")
        with gr.Group():
            rank_outputs = gr.Textbox(lines=1, label="Ranking outputs", placeholder="Ranking outputs", show_label=True)
            fuser_outputs = gr.Textbox(lines=4, label="Fusing outputs", placeholder="Fusing outputs", show_label=True)
        with gr.Row():
            rank_button = gr.Button('Rank LLM Outputs', variant='primary')
            fuse_button = gr.Button('Fuse Top-K ranked outputs', variant='primary')
            clear_button = gr.Button('Clear Blender Outputs', variant='primary')
        blender_config = gr.State(value={
            "source_max_length": DEFAULT_SOURCE_MAX_LENGTH,
            "candidate_max_length": DEFAULT_CANDIDATE_MAX_LENGTH,
            "top_k_for_fuser": 3,
            "max_new_tokens": DEFAULT_FUSER_MAX_NEW_TOKENS,
            "temperature": 0.7,
            "top_p": 1.0,
        })
            
        with gr.Accordion(label='Advanced options', open=False):
            source_max_length = gr.Slider(
                label='Max length of Instruction + Input',
                minimum=1,
                maximum=SOURCE_MAX_LENGTH,
                step=1,
                value=DEFAULT_SOURCE_MAX_LENGTH,
            )
            candidate_max_length = gr.Slider(
                label='Max length of LLM-Output Candidate',
                minimum=1,
                maximum=CANDIDATE_MAX_LENGTH,
                step=1,
                value=DEFAULT_CANDIDATE_MAX_LENGTH,
            )
            top_k_for_fuser = gr.Slider(
                label='Top-k ranked candidates to fuse',
                minimum=1,
                maximum=3,
                step=1,
                value=3,
            )
            max_new_tokens = gr.Slider(
                label='Max new tokens fuser can generate',
                minimum=1,
                maximum=FUSER_MAX_NEW_TOKENS,
                step=1,
                value=DEFAULT_FUSER_MAX_NEW_TOKENS,
            )
            temperature = gr.Slider(
                label='Temperature of fuser generation',
                minimum=0.1,
                maximum=2.0,
                step=0.1,
                value=0.7,
            )
            top_p = gr.Slider(
                label='Top-p of fuser generation',
                minimum=0.05,
                maximum=1.0,
                step=0.05,
                value=1.0,
            )
        
        examples_dummy_textbox = gr.Textbox(lines=1, label="", placeholder="", show_label=False, visible=False)     
        batch_examples = gr.Examples(
            examples=MIX_INSTRUCT_EXAMPLES,
            fn=get_preprocess_examples,
            cache_examples=True,
            examples_per_page=5,
            inputs=[inst_textbox, input_textbox],
            outputs=[inst_textbox, input_textbox, base_llms_num, examples_dummy_textbox],
        )
            
        base_llms_num.input(
            fn=update_base_llms_num,
            inputs=[base_llms_num, saved_llm_outputs],
            outputs=[selected_base_llm_name_dropdown, saved_llm_outputs],
        )
        
        examples_dummy_textbox.change(
            fn=update_base_llm_dropdown_along_examples,
            inputs=[inst_textbox, input_textbox],
            outputs=[saved_llm_outputs, rank_outputs, fuser_outputs, selected_base_llm_name_dropdown],
        ).then(
            fn=display_llm_output,
            inputs=[saved_llm_outputs, selected_base_llm_name_dropdown],
            outputs=selected_base_llm_output,
        )
        
        selected_base_llm_name_dropdown.change(
            fn=display_llm_output,
            inputs=[saved_llm_outputs, selected_base_llm_name_dropdown],
            outputs=selected_base_llm_output,
        )
        
        base_llm_outputs_save_button.click(
            fn=save_llm_output,
            inputs=[selected_base_llm_name_dropdown, selected_base_llm_output, saved_llm_outputs],
            outputs=saved_llm_outputs,
        )
        base_llm_outputs_clear_all_button.click(
            fn=lambda: [{}, ""],
            inputs=[],
            outputs=[saved_llm_outputs, selected_base_llm_output],
        )
        base_llm_outputs_clear_single_button.click(
            fn=lambda: "",
            inputs=[],
            outputs=selected_base_llm_output,
        )
            

        rank_button.click(
            fn=check_save_ranker_inputs,
            inputs=[inst_textbox, input_textbox, saved_llm_outputs, blender_config],
            outputs=blender_state,
        ).success(
            fn=llms_rank,
            inputs=[inst_textbox, input_textbox, saved_llm_outputs, blender_config],
            outputs=[saved_rank_outputs, rank_outputs],
        )
        
        fuse_button.click(
            fn=check_fuser_inputs,
            inputs=[blender_state, blender_config, saved_rank_outputs],
            outputs=[],
        ).success(
            fn=llms_fuse,
            inputs=[blender_state, blender_config, saved_rank_outputs],
            outputs=[saved_fuse_outputs, fuser_outputs],
        )
        
        clear_button.click(
            fn=lambda: ["", "", {}, []],
            inputs=[],
            outputs=[rank_outputs, fuser_outputs, blender_state, saved_rank_outputs],
        )
        
        # update blender config
        source_max_length.change(
            fn=lambda x, y: y.update({"source_max_length": x}) or y,
            inputs=[source_max_length, blender_config],
            outputs=blender_config,
        )
        candidate_max_length.change(
            fn=lambda x, y: y.update({"candidate_max_length": x}) or y,
            inputs=[candidate_max_length, blender_config],
            outputs=blender_config,
        )
        top_k_for_fuser.change(
            fn=lambda x, y: y.update({"top_k_for_fuser": x}) or y,
            inputs=[top_k_for_fuser, blender_config],
            outputs=blender_config,
        )
        max_new_tokens.change(
            fn=lambda x, y: y.update({"max_new_tokens": x}) or y,
            inputs=[max_new_tokens, blender_config],
            outputs=blender_config,
        )
        temperature.change(
            fn=lambda x, y: y.update({"temperature": x}) or y,
            inputs=[temperature, blender_config],
            outputs=blender_config,
        )
        top_p.change(
            fn=lambda x, y: y.update({"top_p": x}) or y,
            inputs=[top_p, blender_config],
            outputs=blender_config,
        )
        
    

    gr.Markdown(descriptions.CITATION)
demo.queue(max_size=20).launch()