File size: 22,038 Bytes
169dd3c
a056e0b
7ee6d4e
 
 
29e2769
bd4620c
169dd3c
a056e0b
 
 
 
 
 
 
68bf69f
 
 
 
 
 
 
 
 
 
 
a056e0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ee6d4e
 
 
 
 
 
 
 
68bf69f
0e92fc0
68bf69f
 
 
 
 
 
 
 
a146b18
68bf69f
 
29e2769
a056e0b
68bf69f
 
 
e10e00e
68bf69f
bfcc00c
68bf69f
 
bd4620c
68bf69f
 
bd4620c
68bf69f
 
bd4620c
 
68bf69f
 
 
 
 
 
 
bfcc00c
 
68bf69f
 
bfcc00c
0e92fc0
 
 
 
 
 
 
 
 
 
 
 
68bf69f
29e2769
68bf69f
 
 
56dd9ac
68bf69f
 
56dd9ac
68bf69f
56dd9ac
29e2769
68bf69f
56dd9ac
29e2769
68bf69f
 
 
 
 
 
 
29e2769
68bf69f
 
 
 
 
 
 
29e2769
68bf69f
 
 
 
 
 
 
29e2769
56dd9ac
 
 
 
 
 
 
29e2769
68bf69f
 
 
29e2769
68bf69f
 
 
29e2769
68bf69f
 
56dd9ac
68bf69f
 
 
29e2769
 
68bf69f
 
 
 
b52aa9e
68bf69f
 
 
7ee6d4e
a056e0b
68bf69f
 
 
 
a056e0b
68bf69f
 
 
bfcc00c
68bf69f
 
 
 
 
7ee6d4e
a056e0b
68bf69f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfcc00c
68bf69f
bfcc00c
68bf69f
a056e0b
68bf69f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b30a2c5
68bf69f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29e2769
68bf69f
 
29e2769
 
a056e0b
 
68bf69f
 
 
 
 
 
 
a056e0b
 
68bf69f
bfcc00c
 
68bf69f
 
a129336
bfcc00c
 
 
68bf69f
 
 
 
 
 
 
 
 
a056e0b
68bf69f
a056e0b
68bf69f
7ee6d4e
68bf69f
a056e0b
 
68bf69f
 
 
 
 
 
 
29e2769
a056e0b
68bf69f
 
 
 
 
 
a056e0b
68bf69f
bfcc00c
 
68bf69f
 
 
bfcc00c
 
 
a056e0b
 
68bf69f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfcc00c
 
68bf69f
 
 
bfcc00c
 
 
a129336
68bf69f
e10e00e
b52aa9e
68bf69f
 
a129336
68bf69f
 
 
 
 
 
 
 
 
 
a129336
68bf69f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e10e00e
68bf69f
 
 
a129336
68bf69f
 
 
 
 
 
 
 
a129336
68bf69f
 
 
 
 
 
 
 
a129336
68bf69f
 
 
 
 
 
b52aa9e
68bf69f
 
 
 
b52aa9e
68bf69f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56dd9ac
68bf69f
56dd9ac
 
 
 
 
 
 
68bf69f
 
bd4620c
68bf69f
 
 
 
 
 
 
 
 
 
 
 
 
a056e0b
3a053a2
68bf69f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
import streamlit as st
import pandas as pd
from PIL import Image
import base64
from io import BytesIO
import random
import plotly.graph_objects as go

# Define constants
MAJOR_A_WIN = "A>>B"
MINOR_A_WIN = "A>B"
MINOR_B_WIN = "B>A"
MAJOR_B_WIN = "B>>A"
TIE = "A=B"

GA_TRACKING_CODE = """
<script async src="https://www.googletagmanager.com/gtag/js?id=G-EVZ0R7014L"></script>
<script>
  window.dataLayer = window.dataLayer || [];
  function gtag(){dataLayer.push(arguments);}
  gtag('js', new Date());

  gtag('config', 'G-EVZ0R7014L');
</script>
"""


def is_consistent(rating, reverse_rating):
    if rating in {MAJOR_A_WIN, MINOR_A_WIN} and reverse_rating in {
        MAJOR_B_WIN,
        MINOR_B_WIN,
    }:
        return True
    if rating in {MAJOR_B_WIN, MINOR_B_WIN} and reverse_rating in {
        MAJOR_A_WIN,
        MINOR_A_WIN,
    }:
        return True
    if reverse_rating in {MAJOR_A_WIN, MINOR_A_WIN} and rating in {
        MAJOR_B_WIN,
        MINOR_B_WIN,
    }:
        return True
    if reverse_rating in {MAJOR_B_WIN, MINOR_B_WIN} and rating in {
        MAJOR_A_WIN,
        MINOR_A_WIN,
    }:
        return True
    if reverse_rating in {TIE} and rating in {TIE}:
        return True
    if reverse_rating in {TIE} and rating not in {TIE}:
        return False
    if rating in {TIE} and reverse_rating not in {TIE}:
        return False
    return False


# Function to convert PIL image to base64
def pil_to_base64(img):
    buffered = BytesIO()
    img.save(buffered, format="PNG")
    img_str = base64.b64encode(buffered.getvalue()).decode()
    return img_str


def main():

    # Load your dataframes
    df_test_set = pd.read_json("data/test_set.jsonl", lines=True)
    df_responses = pd.read_json("data/responses.jsonl", lines=True)
    df_response_judging = pd.read_json("data/response_judging.jsonl", lines=True)
    df_leaderboard = (
        pd.read_csv("data/leaderboard_6_11.csv")
        .sort_values("Rank")
        .reset_index(drop=True)
    )
    df_leaderboard = df_leaderboard.rename(
        columns={"EI Score": "Council Arena EI Score (95% CI)"}
    )

    # Prepare the scenario selector options
    df_test_set["scenario_option"] = (
        df_test_set["emobench_id"].astype(str) + ": " + df_test_set["scenario"]
    )
    scenario_options = df_test_set["scenario_option"].tolist()

    # Prepare the model selector options
    model_options = df_responses["llm_responder"].unique().tolist()

    # Prepare the judge selector options
    judge_options = df_response_judging["llm_judge"].unique().tolist()

    st.set_page_config(
        page_title="Language Model Council", page_icon="🏛️", layout="wide"
    )

    # Custom CSS to center title and header
    center_css = """
    <style>
    h1, h2, h3, h6{
        text-align: center;
    }
    </style>
    """

    # Add the Google Analytics tracking code to the Streamlit app
    st.markdown(GA_TRACKING_CODE, unsafe_allow_html=True)

    # Remove streamlit's hamburger menu.
    st.markdown(
        """
<style>
.stApp [data-testid="stToolbar"]{
    display:none;
}
</style>
""",
        unsafe_allow_html=True,
    )

    st.markdown(center_css, unsafe_allow_html=True)

    # Title and subtitle.
    st.title("Language Model Council")
    st.markdown(
        "### Democratically Benchmarking Foundation Models on Highly Subjective Tasks :classical_building:"
    )
    st.markdown(
        "###### [Justin Zhao](https://www.justinxzhao.com/)¹, [Flor Miriam Plaza-del-Arco](https://fmplaza.github.io/)², [Benjamin Genchel](https://bgenchel.github.io/)¹, [Amanda Cercas Curry](https://amandacurry.github.io/)³"
    )
    st.markdown("###### ¹ Independent, ² Bocconi University, ³ CENTAI Institute")

    # Create three columns
    _, col1, col2, col3, _ = st.columns([0.3, 0.1, 0.1, 0.1, 0.3])

    with col1:
        st.link_button(
            "Data",
            "https://huggingface.co/datasets/llm-council/emotional_application",
            use_container_width=True,
            type="primary",
        )

    with col2:
        st.link_button(
            "Paper",
            "https://arxiv.org/abs/2406.08598",
            use_container_width=True,
            type="primary",
        )

    with col3:
        st.link_button(
            "Github",
            "https://github.com/llm-council/llm-council",
            use_container_width=True,
            type="primary",
        )

    # with col4:
    #     st.link_button(
    #         "Website",
    #         "https://llm-council.com/",
    #         use_container_width=True,
    #         type="primary",
    #     )

    # Render hero image.
    with open("img/hero.svg", "r") as file:
        svg_content = file.read()

    left_co, cent_co, last_co = st.columns([0.2, 0.6, 0.2])
    with cent_co:
        st.image(svg_content, use_column_width=True)

    with cent_co.expander("Abstract"):
        st.markdown(
            """As Large Language Models (LLMs) continue to evolve, evaluating them remains a persistent challenge. Many recent evaluations use LLMs as judges to score outputs from other LLMs, often relying on a single large model like GPT-4o. However, using a single LLM judge is prone to intra-model bias, and many tasks - such as those related to emotional intelligence, creative writing, and persuasiveness - may be too subjective for a single model to judge fairly. We introduce the Language Model Council (LMC), where a group of LLMs collaborate to create tests, respond to them, and evaluate each other's responses to produce a ranking in a democratic fashion. Unlike previous approaches that focus on reducing cost or bias by using a panel of smaller models, our work examines the benefits and nuances of a fully inclusive LLM evaluation system. In a detailed case study on emotional intelligence, we deploy a council of 20 recent LLMs to rank each other on open-ended responses to interpersonal conflicts. Our results show that the LMC produces rankings that are more separable and more robust, and through a user study, we show that they are more consistent with human evaluations than any individual LLM judge. Using all LLMs for judging can be costly, however, so we use Monte Carlo simulations and hand-curated sub-councils to study hypothetical council compositions and discuss the value of the incremental LLM judge."""
        )
    st.markdown(
        "This leaderboard comes from deploying a Council of 20 LLMs on an **open-ended emotional intelligence task: responding to interpersonal dilemmas**."
    )

    # Create horizontal tabs
    tabs = st.tabs(
        [
            "Leaderboard Results",
            "Browse Data",
            "Analysis",
            "About Us",
        ]
    )

    # Define content for each tab
    with tabs[0]:
        _, mid_column, _ = st.columns([0.2, 0.6, 0.2])
        mid_column.markdown("#### Leaderboard Graph")

        df = df_leaderboard.copy()
        df["Score"] = df["Council Arena EI Score (95% CI)"].apply(
            lambda x: float(x.split(" ")[0])
        )
        df["Lower"] = df["Council Arena EI Score (95% CI)"].apply(
            lambda x: float(x.split(" ")[1][1:-1])
        )
        df["Upper"] = df["Council Arena EI Score (95% CI)"].apply(
            lambda x: float(x.split(" ")[2][:-1])
        )

        # Sort the DataFrame by Score in descending order
        df = df.sort_values(by="Score", ascending=False)

        # Create the bar chart
        fig = go.Figure()

        # Generate rainbow colors
        num_bars = len(df)
        colors = [f"hsl({int(360 / num_bars * i)}, 100%, 50%)" for i in range(num_bars)]

        fig.add_trace(
            go.Bar(
                x=df["Score"],
                y=df["LLM"],
                orientation="h",
                error_x=dict(
                    type="data",
                    array=df["Upper"],
                    arrayminus=-1 * df["Lower"],
                    thickness=0.5,
                    width=3,
                    color="black",
                ),
                marker=dict(color=colors, opacity=0.8),
            )
        )

        fig.update_layout(
            xaxis=dict(title="Council Emotional Intelligence Score", showgrid=True),
            yaxis_title="LLM",
            yaxis=dict(autorange="reversed"),
            template="presentation",
            width=1000,
            height=700,
        )

        # Display the plot in Streamlit
        mid_column.plotly_chart(fig)

        mid_column.divider()

        mid_column.markdown("#### Leaderboard Table")

        # Display the table.
        mid_column.dataframe(df_leaderboard, hide_index=True)

    # HTML and CSS to create a text box with specified color
    def colored_text_box(text, background_color, text_color="black"):
        html_code = f"""
        <div style="
            background-color: {background_color};
            color: {text_color};
            padding: 10px;
            border-radius: 10px;
            ">
            {text}
        </div>
        """
        return html_code

    # Ensure to initialize session state variables if they do not exist
    if "selected_scenario" not in st.session_state:
        st.session_state.selected_scenario = None

    if "selected_model" not in st.session_state:
        st.session_state.selected_model = None

    if "selected_judge" not in st.session_state:
        st.session_state.selected_judge = None

    # Define callback functions to update session state
    def update_scenario():
        st.session_state.selected_scenario = st.session_state.scenario_selector

    def update_model():
        st.session_state.selected_model = st.session_state.model_selector

    def update_judge():
        st.session_state.selected_judge = st.session_state.judge_selector

    def randomize_selection():
        st.session_state.selected_scenario = random.choice(scenario_options)
        st.session_state.selected_model = random.choice(model_options)
        st.session_state.selected_judge = random.choice(judge_options)

    with tabs[1]:
        # Add randomize button at the top of the app
        _, mid_column, _ = st.columns([0.4, 0.2, 0.4])
        mid_column.button(
            ":game_die: Randomize!",
            on_click=randomize_selection,
            type="primary",
            use_container_width=True,
        )

        st.markdown("#### 1. Select a scenario.")
        # Create the selectors
        st.session_state.selected_scenario = st.selectbox(
            "Select Scenario",
            scenario_options,
            label_visibility="hidden",
            key="scenario_selector",
            on_change=update_scenario,
            index=(
                scenario_options.index(st.session_state.selected_scenario)
                if st.session_state.selected_scenario
                else 0
            ),
        )

        # Get the selected scenario details
        if st.session_state.selected_scenario:
            selected_emobench_id = int(
                st.session_state.selected_scenario.split(": ")[0]
            )
            scenario_details = df_test_set[
                df_test_set["emobench_id"] == selected_emobench_id
            ].iloc[0]

            # Display the detailed dilemma and additional information
            st.markdown(
                colored_text_box(
                    scenario_details["detailed_dilemma"],
                    "#01204E",
                    "white",
                ),
                unsafe_allow_html=True,
            )
            with st.expander("Additional Information"):
                st.write(
                    {
                        "LLM Author": scenario_details["llm_author"],
                        "Problem": scenario_details["problem"],
                        "Relationship": scenario_details["relationship"],
                        "Scenario": scenario_details["scenario"],
                    }
                )

        st.divider()

        st.markdown("#### 2. View responses.")

        # Create two columns for model selectors
        col1, col2 = st.columns(2)

        with col1:
            fixed_model = "qwen1.5-32B-Chat"
            st.selectbox(
                "Select Model",
                [fixed_model],
                key="fixed_model",
                label_visibility="hidden",
            )

            # Get the response string for the fixed model
            if st.session_state.selected_scenario:
                response_details_fixed = df_responses[
                    (df_responses["emobench_id"] == selected_emobench_id)
                    & (df_responses["llm_responder"] == fixed_model)
                ].iloc[0]

                # Display the response string
                st.markdown(
                    colored_text_box(
                        response_details_fixed["response_string"],
                        "#028391",
                        "white",
                    ),
                    unsafe_allow_html=True,
                )

        with col2:
            st.session_state.selected_model = st.selectbox(
                "Select Model",
                model_options,
                key="model_selector",
                on_change=update_model,
                index=(
                    model_options.index(st.session_state.selected_model)
                    if st.session_state.selected_model
                    else 0
                ),
            )

            # Get the response string for the selected model
            if st.session_state.selected_model and st.session_state.selected_scenario:
                response_details_dynamic = df_responses[
                    (df_responses["emobench_id"] == selected_emobench_id)
                    & (df_responses["llm_responder"] == st.session_state.selected_model)
                ].iloc[0]

                # Display the response string
                st.markdown(
                    colored_text_box(
                        response_details_dynamic["response_string"],
                        "#028391",
                        "white",
                    ),
                    unsafe_allow_html=True,
                )

        st.divider()

        st.markdown("#### 3. Response judging.")
        st.markdown("##### All council members")
        col1, col2 = st.columns(2)

        with col1:
            st.write(f"**{fixed_model}** vs **{st.session_state.selected_model}**")
            pairwise_counts_left = df_response_judging[
                (df_response_judging["first_completion_by"] == fixed_model)
                & (
                    df_response_judging["second_completion_by"]
                    == st.session_state.selected_model
                )
            ]["pairwise_choice"].value_counts()
            st.bar_chart(pairwise_counts_left)

        with col2:
            st.write(f"**{st.session_state.selected_model}** vs **{fixed_model}**")
            pairwise_counts_right = df_response_judging[
                (
                    df_response_judging["first_completion_by"]
                    == st.session_state.selected_model
                )
                & (df_response_judging["second_completion_by"] == fixed_model)
            ]["pairwise_choice"].value_counts()
            st.bar_chart(pairwise_counts_right)

        # Create the llm_judge selector
        st.markdown("##### Individual LLM judges")
        st.session_state.selected_judge = st.selectbox(
            "Select Judge",
            judge_options,
            label_visibility="hidden",
            key="judge_selector",
            on_change=update_judge,
            index=(
                judge_options.index(st.session_state.selected_judge)
                if st.session_state.selected_judge
                else 0
            ),
        )

        # Get the judging details for the selected judge and models
        if st.session_state.selected_judge and st.session_state.selected_scenario:
            col1, col2 = st.columns(2)

            judging_details_left = df_response_judging[
                (df_response_judging["llm_judge"] == st.session_state.selected_judge)
                & (df_response_judging["first_completion_by"] == fixed_model)
                & (
                    df_response_judging["second_completion_by"]
                    == st.session_state.selected_model
                )
            ].iloc[0]

            judging_details_right = df_response_judging[
                (df_response_judging["llm_judge"] == st.session_state.selected_judge)
                & (
                    df_response_judging["first_completion_by"]
                    == st.session_state.selected_model
                )
                & (df_response_judging["second_completion_by"] == fixed_model)
            ].iloc[0]

            # Render consistency.
            if is_consistent(
                judging_details_left["pairwise_choice"],
                judging_details_right["pairwise_choice"],
            ):
                st.success(
                    f"{st.session_state.selected_judge} as a judge was consistent on this example with positions flipped.",
                    icon="✅",
                )
            else:
                st.warning(
                    f"{st.session_state.selected_judge} as a judge was inconsistent on this example with positions flipped.",
                    icon="⚠️",
                )

            # Display the judging details
            with col1:
                if not judging_details_left.empty:
                    st.write(
                        f"**Pairwise Choice:** {judging_details_left['pairwise_choice']}"
                    )
                    st.markdown(
                        colored_text_box(
                            judging_details_left["judging_response_string"],
                            "#FEAE6F",
                            "black",
                        ),
                        unsafe_allow_html=True,
                    )
                else:
                    st.write("No judging details found for the selected combination.")

            with col2:
                if not judging_details_right.empty:
                    st.write(
                        f"**Pairwise Choice:** {judging_details_right['pairwise_choice']}"
                    )
                    st.markdown(
                        colored_text_box(
                            judging_details_right["judging_response_string"],
                            "#FEAE6F",
                            "black",
                        ),
                        unsafe_allow_html=True,
                    )
                else:
                    st.write("No judging details found for the selected combination.")

    with tabs[2]:
        st.markdown("### Battles (Respondent vs. Respondent)")
        st.markdown("###### Expected win rates based on Terry-Bradley coefficients")
        image = Image.open("img/llm_vs_llm_win_rates.png")
        img_base64 = pil_to_base64(image)
        centered_image_html = f"""
        <div style="text-align: center;">
            <img src="data:image/png;base64,{img_base64}" width="1000"/>
        </div>
        """
        st.markdown(centered_image_html, unsafe_allow_html=True)

        st.divider()

        st.markdown("### Affinities (Judge vs. Respondent)")

        st.markdown("###### Raw affinities")
        image = Image.open("img/raw.png")
        img_base64 = pil_to_base64(image)
        centered_image_html = f"""
        <div style="text-align: center;">
            <img src="data:image/png;base64,{img_base64}" width="1000"/>
        </div>
        """
        st.markdown(centered_image_html, unsafe_allow_html=True)

        # Some extra space.
        st.text("")
        st.text("")
        st.text("")

        st.markdown("###### Council-Normalized")
        image = Image.open("img/council_normalized.png")
        img_base64 = pil_to_base64(image)
        centered_image_html = f"""
        <div style="text-align: center;">
            <img src="data:image/png;base64,{img_base64}" width="1000"/>
        </div>
        """
        st.markdown(centered_image_html, unsafe_allow_html=True)

        st.divider()

        st.markdown("### Agreement (Judge vs. Judge)")

        st.markdown("###### Sidewise Cohen's Kappa:")
        image = Image.open("img/judge_agreement.sidewise_cohen_kappa.png")
        img_base64 = pil_to_base64(image)
        centered_image_html = f"""
        <div style="text-align: center;">
            <img src="data:image/png;base64,{img_base64}" width="1000"/>
        </div>
        """
        st.markdown(centered_image_html, unsafe_allow_html=True)

        st.write("Check out the paper for more detailed analysis!")

    with tabs[-1]:
        st.markdown(
            """**Motivation**:

Good LLM evaluations are [really hard](https://www.jasonwei.net/blog/evals), and newly released models often make their own claims about being the best at something, often citing its position on a benchmark or a leaderboard. But what if we let the models themselves decide who's the best?

**Main collaborators**:
- [Justin Zhao](https://x.com/justinxzhao)
- [Flor Plaza](https://x.com/florplaza22)
- [Sam Paech](https://x.com/sam_paech)
- [Federico Bianchi](https://x.com/federicobianchy)
- [Sahand Sabour](https://x.com/SahandSabour)
- [Amanda Cercas Curry](https://x.com/CurriedAmanda)
        """
        )

    # st.markdown("#### Citation")
    with st.expander("Citation"):
        st.write(
            "Please cite the following paper if you find our leaderboard, dataset, or framework helpful."
        )
        st.code(
            """@misc{zhao2024council,
        Title = {Language Model Council: Benchmarking Foundation Models on Highly Subjective Tasks by Consensus},
        Author = {Justin Zhao and Flor Miriam Plaza-del-Arco and Amanda Cercas Curry},
        Year = {2024}
        Eprint = {arXiv:2406.08598},
    }"""
        )


if __name__ == "__main__":
    main()