justinxzhao
commited on
Commit
·
29e2769
1
Parent(s):
bfcc00c
Add index.html shim, and add hero.svg
Browse files- app.py +150 -56
- img/hero.png +0 -0
- img/hero.svg +0 -0
- index.html +7 -0
app.py
CHANGED
@@ -3,6 +3,7 @@ import pandas as pd
|
|
3 |
from PIL import Image
|
4 |
import base64
|
5 |
from io import BytesIO
|
|
|
6 |
|
7 |
# Define constants
|
8 |
MAJOR_A_WIN = "A>>B"
|
@@ -50,6 +51,14 @@ def pil_to_base64(img):
|
|
50 |
return img_str
|
51 |
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
# Load your dataframes
|
54 |
df_test_set = pd.read_json("data/test_set.jsonl", lines=True)
|
55 |
df_responses = pd.read_json("data/responses.jsonl", lines=True)
|
@@ -57,7 +66,9 @@ df_response_judging = pd.read_json("data/response_judging.jsonl", lines=True)
|
|
57 |
df_leaderboard = (
|
58 |
pd.read_csv("data/leaderboard_6_11.csv").sort_values("Rank").reset_index(drop=True)
|
59 |
)
|
60 |
-
df_leaderboard = df_leaderboard.rename(
|
|
|
|
|
61 |
|
62 |
# Prepare the scenario selector options
|
63 |
df_test_set["scenario_option"] = (
|
@@ -84,7 +95,6 @@ div.stButton > button {
|
|
84 |
}
|
85 |
</style>
|
86 |
"""
|
87 |
-
|
88 |
st.markdown(full_width_button_css, unsafe_allow_html=True)
|
89 |
|
90 |
# Create a button that triggers the JavaScript function
|
@@ -104,8 +114,11 @@ with col2:
|
|
104 |
st.write("Button 2 clicked")
|
105 |
|
106 |
with col3:
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
109 |
|
110 |
# Custom CSS to center title and header
|
111 |
center_css = """
|
@@ -118,35 +131,48 @@ h1, h2, h6{
|
|
118 |
|
119 |
st.markdown(center_css, unsafe_allow_html=True)
|
120 |
|
121 |
-
#
|
122 |
-
image = Image.open("img/lmc_icon.png")
|
123 |
-
|
124 |
-
#
|
125 |
-
|
126 |
-
|
127 |
-
#
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
"""
|
133 |
-
|
134 |
-
# Rendering the centered image
|
135 |
-
st.markdown(centered_image_html, unsafe_allow_html=True)
|
136 |
-
|
137 |
st.title("Language Model Council")
|
138 |
st.markdown(
|
139 |
-
"###### Benchmarking Foundation Models on Highly Subjective Tasks by Consensus"
|
140 |
)
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
)
|
151 |
st.markdown(
|
152 |
"This leaderboard comes from deploying a Council of 20 LLMs on an **open-ended emotional intelligence task: responding to interpersonal dilemmas**."
|
@@ -175,22 +201,66 @@ def colored_text_box(text, background_color, text_color="black"):
|
|
175 |
return html_code
|
176 |
|
177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
with tabs[1]:
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
st.markdown("### 1. Select a scenario.")
|
180 |
# Create the selectors
|
181 |
-
selected_scenario = st.selectbox(
|
182 |
-
"Select Scenario",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
)
|
184 |
|
185 |
# Get the selected scenario details
|
186 |
-
if selected_scenario:
|
187 |
-
selected_emobench_id = int(selected_scenario.split(": ")[0])
|
188 |
scenario_details = df_test_set[
|
189 |
df_test_set["emobench_id"] == selected_emobench_id
|
190 |
].iloc[0]
|
191 |
|
192 |
# Display the detailed dilemma and additional information
|
193 |
-
# st.write(scenario_details["detailed_dilemma"])
|
194 |
st.markdown(
|
195 |
colored_text_box(
|
196 |
scenario_details["detailed_dilemma"], "#eeeeeeff", "black"
|
@@ -217,14 +287,13 @@ with tabs[1]:
|
|
217 |
)
|
218 |
|
219 |
# Get the response string for the fixed model
|
220 |
-
if selected_scenario:
|
221 |
response_details_fixed = df_responses[
|
222 |
(df_responses["emobench_id"] == selected_emobench_id)
|
223 |
& (df_responses["llm_responder"] == fixed_model)
|
224 |
].iloc[0]
|
225 |
|
226 |
# Display the response string
|
227 |
-
# st.write(response_details_fixed["response_string"])
|
228 |
st.markdown(
|
229 |
colored_text_box(
|
230 |
response_details_fixed["response_string"], "#eeeeeeff", "black"
|
@@ -233,19 +302,26 @@ with tabs[1]:
|
|
233 |
)
|
234 |
|
235 |
with col2:
|
236 |
-
selected_model = st.selectbox(
|
237 |
-
"Select Model",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
)
|
239 |
|
240 |
# Get the response string for the selected model
|
241 |
-
if selected_model and selected_scenario:
|
242 |
response_details_dynamic = df_responses[
|
243 |
(df_responses["emobench_id"] == selected_emobench_id)
|
244 |
-
& (df_responses["llm_responder"] == selected_model)
|
245 |
].iloc[0]
|
246 |
|
247 |
# Display the response string
|
248 |
-
# st.write(response_details_dynamic["response_string"])
|
249 |
st.markdown(
|
250 |
colored_text_box(
|
251 |
response_details_dynamic["response_string"], "#eeeeeeff", "black"
|
@@ -262,43 +338,65 @@ with tabs[1]:
|
|
262 |
col1, col2 = st.columns(2)
|
263 |
|
264 |
with col1:
|
265 |
-
st.write(f"**{fixed_model}** vs **{selected_model}**")
|
266 |
pairwise_counts_left = df_response_judging[
|
267 |
(df_response_judging["first_completion_by"] == fixed_model)
|
268 |
-
& (
|
|
|
|
|
|
|
269 |
]["pairwise_choice"].value_counts()
|
270 |
st.bar_chart(pairwise_counts_left)
|
271 |
|
272 |
with col2:
|
273 |
-
st.write(f"**{selected_model}** vs **{fixed_model}**")
|
274 |
pairwise_counts_right = df_response_judging[
|
275 |
-
(
|
|
|
|
|
|
|
276 |
& (df_response_judging["second_completion_by"] == fixed_model)
|
277 |
]["pairwise_choice"].value_counts()
|
278 |
st.bar_chart(pairwise_counts_right)
|
279 |
|
280 |
# Create the llm_judge selector
|
281 |
-
st.markdown("####
|
282 |
-
selected_judge = st.selectbox(
|
283 |
-
"Select Judge",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
)
|
285 |
|
286 |
# Get the judging details for the selected judge and models
|
287 |
-
if selected_judge and selected_scenario:
|
288 |
col1, col2 = st.columns(2)
|
289 |
|
290 |
judging_details_left = df_response_judging[
|
291 |
-
(df_response_judging["llm_judge"] == selected_judge)
|
292 |
& (df_response_judging["first_completion_by"] == fixed_model)
|
293 |
-
& (
|
|
|
|
|
|
|
294 |
].iloc[0]
|
295 |
|
296 |
judging_details_right = df_response_judging[
|
297 |
-
(df_response_judging["llm_judge"] == selected_judge)
|
298 |
-
& (
|
|
|
|
|
|
|
299 |
& (df_response_judging["second_completion_by"] == fixed_model)
|
300 |
].iloc[0]
|
301 |
|
|
|
302 |
if is_consistent(
|
303 |
judging_details_left["pairwise_choice"],
|
304 |
judging_details_right["pairwise_choice"],
|
@@ -309,12 +407,10 @@ with tabs[1]:
|
|
309 |
|
310 |
# Display the judging details
|
311 |
with col1:
|
312 |
-
# st.write(f"**{fixed_model}** vs **{selected_model}**")
|
313 |
if not judging_details_left.empty:
|
314 |
st.write(
|
315 |
f"**Pairwise Choice:** {judging_details_left['pairwise_choice']}"
|
316 |
)
|
317 |
-
# st.code(judging_details_left["judging_response_string"])
|
318 |
st.markdown(
|
319 |
colored_text_box(
|
320 |
judging_details_left["judging_response_string"],
|
@@ -327,12 +423,10 @@ with tabs[1]:
|
|
327 |
st.write("No judging details found for the selected combination.")
|
328 |
|
329 |
with col2:
|
330 |
-
# st.write(f"**{selected_model}** vs **{fixed_model}**")
|
331 |
if not judging_details_right.empty:
|
332 |
st.write(
|
333 |
f"**Pairwise Choice:** {judging_details_right['pairwise_choice']}"
|
334 |
)
|
335 |
-
# st.code(judging_details_right["judging_response_string"])
|
336 |
st.markdown(
|
337 |
colored_text_box(
|
338 |
judging_details_right["judging_response_string"],
|
|
|
3 |
from PIL import Image
|
4 |
import base64
|
5 |
from io import BytesIO
|
6 |
+
import random
|
7 |
|
8 |
# Define constants
|
9 |
MAJOR_A_WIN = "A>>B"
|
|
|
51 |
return img_str
|
52 |
|
53 |
|
54 |
+
# Function to convert PIL image to base64
|
55 |
+
def pil_svg_to_base64(img):
|
56 |
+
buffered = BytesIO()
|
57 |
+
img.save(buffered, format="SVG")
|
58 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
59 |
+
return img_str
|
60 |
+
|
61 |
+
|
62 |
# Load your dataframes
|
63 |
df_test_set = pd.read_json("data/test_set.jsonl", lines=True)
|
64 |
df_responses = pd.read_json("data/responses.jsonl", lines=True)
|
|
|
66 |
df_leaderboard = (
|
67 |
pd.read_csv("data/leaderboard_6_11.csv").sort_values("Rank").reset_index(drop=True)
|
68 |
)
|
69 |
+
df_leaderboard = df_leaderboard.rename(
|
70 |
+
columns={"EI Score": "Council Arena EI Score (95% CI)"}
|
71 |
+
)
|
72 |
|
73 |
# Prepare the scenario selector options
|
74 |
df_test_set["scenario_option"] = (
|
|
|
95 |
}
|
96 |
</style>
|
97 |
"""
|
|
|
98 |
st.markdown(full_width_button_css, unsafe_allow_html=True)
|
99 |
|
100 |
# Create a button that triggers the JavaScript function
|
|
|
114 |
st.write("Button 2 clicked")
|
115 |
|
116 |
with col3:
|
117 |
+
st.link_button(
|
118 |
+
"Github",
|
119 |
+
"https://github.com/llm-council/llm-council",
|
120 |
+
use_container_width=True,
|
121 |
+
)
|
122 |
|
123 |
# Custom CSS to center title and header
|
124 |
center_css = """
|
|
|
131 |
|
132 |
st.markdown(center_css, unsafe_allow_html=True)
|
133 |
|
134 |
+
# Centered icon.
|
135 |
+
# image = Image.open("img/lmc_icon.png")
|
136 |
+
# img_base64 = pil_to_base64(image)
|
137 |
+
# centered_image_html = f"""
|
138 |
+
# <div style="text-align: center;">
|
139 |
+
# <img src="data:image/png;base64,{img_base64}" width="50"/>
|
140 |
+
# </div>
|
141 |
+
# """
|
142 |
+
# st.markdown(centered_image_html, unsafe_allow_html=True)
|
143 |
+
|
144 |
+
# Title and subtitle.
|
|
|
|
|
|
|
|
|
|
|
145 |
st.title("Language Model Council")
|
146 |
st.markdown(
|
147 |
+
"###### Benchmarking Foundation Models on Highly Subjective Tasks by Consensus :classical_building:"
|
148 |
)
|
149 |
|
150 |
+
# Render hero image.
|
151 |
+
with open("img/hero.svg", "r") as file:
|
152 |
+
svg_content = file.read()
|
153 |
|
154 |
+
left_co, cent_co, last_co = st.columns([0.2, 0.6, 0.2])
|
155 |
+
with cent_co:
|
156 |
+
st.image(svg_content, use_column_width=True)
|
157 |
+
|
158 |
+
|
159 |
+
with cent_co.expander("Abstract"):
|
160 |
+
st.markdown(
|
161 |
+
"""The rapid advancement of Large Language Models (LLMs) necessitates robust
|
162 |
+
and challenging benchmarks. Leaderboards like Chatbot Arena rank LLMs based
|
163 |
+
on how well their responses align with human preferences. However, many tasks
|
164 |
+
such as those related to emotional intelligence, creative writing, or persuasiveness,
|
165 |
+
are highly subjective and often lack majoritarian human agreement. Judges may
|
166 |
+
have irreconcilable disagreements about what constitutes a better response. To
|
167 |
+
address the challenge of ranking LLMs on highly subjective tasks, we propose
|
168 |
+
a novel benchmarking framework, the Language Model Council (LMC). The
|
169 |
+
LMC operates through a democratic process to: 1) formulate a test set through
|
170 |
+
equal participation, 2) administer the test among council members, and 3) evaluate
|
171 |
+
responses as a collective jury. We deploy a council of 20 newest LLMs on an
|
172 |
+
open-ended emotional intelligence task: responding to interpersonal dilemmas.
|
173 |
+
Our results show that the LMC produces rankings that are more separable, robust,
|
174 |
+
and less biased than those from any individual LLM judge, and is more consistent
|
175 |
+
with a human-established leaderboard compared to other benchmarks."""
|
176 |
)
|
177 |
st.markdown(
|
178 |
"This leaderboard comes from deploying a Council of 20 LLMs on an **open-ended emotional intelligence task: responding to interpersonal dilemmas**."
|
|
|
201 |
return html_code
|
202 |
|
203 |
|
204 |
+
# Ensure to initialize session state variables if they do not exist
|
205 |
+
if "selected_scenario" not in st.session_state:
|
206 |
+
st.session_state.selected_scenario = None
|
207 |
+
|
208 |
+
if "selected_model" not in st.session_state:
|
209 |
+
st.session_state.selected_model = None
|
210 |
+
|
211 |
+
if "selected_judge" not in st.session_state:
|
212 |
+
st.session_state.selected_judge = None
|
213 |
+
|
214 |
+
|
215 |
+
# Define callback functions to update session state
|
216 |
+
def update_scenario():
|
217 |
+
st.session_state.selected_scenario = st.session_state.scenario_selector
|
218 |
+
|
219 |
+
|
220 |
+
def update_model():
|
221 |
+
st.session_state.selected_model = st.session_state.model_selector
|
222 |
+
|
223 |
+
|
224 |
+
def update_judge():
|
225 |
+
st.session_state.selected_judge = st.session_state.judge_selector
|
226 |
+
|
227 |
+
|
228 |
+
def randomize_selection():
|
229 |
+
st.session_state.selected_scenario = random.choice(scenario_options)
|
230 |
+
st.session_state.selected_model = random.choice(model_options)
|
231 |
+
st.session_state.selected_judge = random.choice(judge_options)
|
232 |
+
|
233 |
+
|
234 |
with tabs[1]:
|
235 |
+
# Add randomize button at the top of the app
|
236 |
+
_, mid_column, _ = st.columns([0.4, 0.2, 0.4])
|
237 |
+
mid_column.button(
|
238 |
+
":game_die: Randomize!", on_click=randomize_selection, type="primary"
|
239 |
+
)
|
240 |
+
|
241 |
st.markdown("### 1. Select a scenario.")
|
242 |
# Create the selectors
|
243 |
+
st.session_state.selected_scenario = st.selectbox(
|
244 |
+
"Select Scenario",
|
245 |
+
scenario_options,
|
246 |
+
label_visibility="hidden",
|
247 |
+
key="scenario_selector",
|
248 |
+
on_change=update_scenario,
|
249 |
+
index=(
|
250 |
+
scenario_options.index(st.session_state.selected_scenario)
|
251 |
+
if st.session_state.selected_scenario
|
252 |
+
else 0
|
253 |
+
),
|
254 |
)
|
255 |
|
256 |
# Get the selected scenario details
|
257 |
+
if st.session_state.selected_scenario:
|
258 |
+
selected_emobench_id = int(st.session_state.selected_scenario.split(": ")[0])
|
259 |
scenario_details = df_test_set[
|
260 |
df_test_set["emobench_id"] == selected_emobench_id
|
261 |
].iloc[0]
|
262 |
|
263 |
# Display the detailed dilemma and additional information
|
|
|
264 |
st.markdown(
|
265 |
colored_text_box(
|
266 |
scenario_details["detailed_dilemma"], "#eeeeeeff", "black"
|
|
|
287 |
)
|
288 |
|
289 |
# Get the response string for the fixed model
|
290 |
+
if st.session_state.selected_scenario:
|
291 |
response_details_fixed = df_responses[
|
292 |
(df_responses["emobench_id"] == selected_emobench_id)
|
293 |
& (df_responses["llm_responder"] == fixed_model)
|
294 |
].iloc[0]
|
295 |
|
296 |
# Display the response string
|
|
|
297 |
st.markdown(
|
298 |
colored_text_box(
|
299 |
response_details_fixed["response_string"], "#eeeeeeff", "black"
|
|
|
302 |
)
|
303 |
|
304 |
with col2:
|
305 |
+
st.session_state.selected_model = st.selectbox(
|
306 |
+
"Select Model",
|
307 |
+
model_options,
|
308 |
+
key="model_selector",
|
309 |
+
on_change=update_model,
|
310 |
+
index=(
|
311 |
+
model_options.index(st.session_state.selected_model)
|
312 |
+
if st.session_state.selected_model
|
313 |
+
else 0
|
314 |
+
),
|
315 |
)
|
316 |
|
317 |
# Get the response string for the selected model
|
318 |
+
if st.session_state.selected_model and st.session_state.selected_scenario:
|
319 |
response_details_dynamic = df_responses[
|
320 |
(df_responses["emobench_id"] == selected_emobench_id)
|
321 |
+
& (df_responses["llm_responder"] == st.session_state.selected_model)
|
322 |
].iloc[0]
|
323 |
|
324 |
# Display the response string
|
|
|
325 |
st.markdown(
|
326 |
colored_text_box(
|
327 |
response_details_dynamic["response_string"], "#eeeeeeff", "black"
|
|
|
338 |
col1, col2 = st.columns(2)
|
339 |
|
340 |
with col1:
|
341 |
+
st.write(f"**{fixed_model}** vs **{st.session_state.selected_model}**")
|
342 |
pairwise_counts_left = df_response_judging[
|
343 |
(df_response_judging["first_completion_by"] == fixed_model)
|
344 |
+
& (
|
345 |
+
df_response_judging["second_completion_by"]
|
346 |
+
== st.session_state.selected_model
|
347 |
+
)
|
348 |
]["pairwise_choice"].value_counts()
|
349 |
st.bar_chart(pairwise_counts_left)
|
350 |
|
351 |
with col2:
|
352 |
+
st.write(f"**{st.session_state.selected_model}** vs **{fixed_model}**")
|
353 |
pairwise_counts_right = df_response_judging[
|
354 |
+
(
|
355 |
+
df_response_judging["first_completion_by"]
|
356 |
+
== st.session_state.selected_model
|
357 |
+
)
|
358 |
& (df_response_judging["second_completion_by"] == fixed_model)
|
359 |
]["pairwise_choice"].value_counts()
|
360 |
st.bar_chart(pairwise_counts_right)
|
361 |
|
362 |
# Create the llm_judge selector
|
363 |
+
st.markdown("#### Individual LLM judges")
|
364 |
+
st.session_state.selected_judge = st.selectbox(
|
365 |
+
"Select Judge",
|
366 |
+
judge_options,
|
367 |
+
label_visibility="hidden",
|
368 |
+
key="judge_selector",
|
369 |
+
on_change=update_judge,
|
370 |
+
index=(
|
371 |
+
judge_options.index(st.session_state.selected_judge)
|
372 |
+
if st.session_state.selected_judge
|
373 |
+
else 0
|
374 |
+
),
|
375 |
)
|
376 |
|
377 |
# Get the judging details for the selected judge and models
|
378 |
+
if st.session_state.selected_judge and st.session_state.selected_scenario:
|
379 |
col1, col2 = st.columns(2)
|
380 |
|
381 |
judging_details_left = df_response_judging[
|
382 |
+
(df_response_judging["llm_judge"] == st.session_state.selected_judge)
|
383 |
& (df_response_judging["first_completion_by"] == fixed_model)
|
384 |
+
& (
|
385 |
+
df_response_judging["second_completion_by"]
|
386 |
+
== st.session_state.selected_model
|
387 |
+
)
|
388 |
].iloc[0]
|
389 |
|
390 |
judging_details_right = df_response_judging[
|
391 |
+
(df_response_judging["llm_judge"] == st.session_state.selected_judge)
|
392 |
+
& (
|
393 |
+
df_response_judging["first_completion_by"]
|
394 |
+
== st.session_state.selected_model
|
395 |
+
)
|
396 |
& (df_response_judging["second_completion_by"] == fixed_model)
|
397 |
].iloc[0]
|
398 |
|
399 |
+
# Render consistency.
|
400 |
if is_consistent(
|
401 |
judging_details_left["pairwise_choice"],
|
402 |
judging_details_right["pairwise_choice"],
|
|
|
407 |
|
408 |
# Display the judging details
|
409 |
with col1:
|
|
|
410 |
if not judging_details_left.empty:
|
411 |
st.write(
|
412 |
f"**Pairwise Choice:** {judging_details_left['pairwise_choice']}"
|
413 |
)
|
|
|
414 |
st.markdown(
|
415 |
colored_text_box(
|
416 |
judging_details_left["judging_response_string"],
|
|
|
423 |
st.write("No judging details found for the selected combination.")
|
424 |
|
425 |
with col2:
|
|
|
426 |
if not judging_details_right.empty:
|
427 |
st.write(
|
428 |
f"**Pairwise Choice:** {judging_details_right['pairwise_choice']}"
|
429 |
)
|
|
|
430 |
st.markdown(
|
431 |
colored_text_box(
|
432 |
judging_details_right["judging_response_string"],
|
img/hero.png
ADDED
img/hero.svg
ADDED
index.html
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<iframe
|
2 |
+
id="your-iframe-id"
|
3 |
+
src="https://llm-council-emotional-intelligence-arena.hf.space"
|
4 |
+
frameborder="0"
|
5 |
+
width="100%"
|
6 |
+
height="100%"
|
7 |
+
></iframe>
|