File size: 31,565 Bytes
cf367e2
663a6db
cf367e2
c0a5a18
 
 
 
 
 
3e0f8f8
577870e
 
 
 
3e0f8f8
577870e
 
38e43b5
 
 
 
 
3e0f8f8
 
 
38e43b5
663a6db
cf367e2
 
 
 
c0a5a18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e0f8f8
 
c0a5a18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38e43b5
 
 
 
 
 
 
 
 
 
c0a5a18
 
 
 
 
 
 
 
 
 
577870e
 
 
 
 
 
 
 
 
c0a5a18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
577870e
 
c0a5a18
 
 
 
577870e
c0a5a18
577870e
c0a5a18
577870e
c0a5a18
 
 
 
3e0f8f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
577870e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e0f8f8
577870e
3e0f8f8
577870e
 
 
 
 
 
 
3e0f8f8
38e43b5
3e0f8f8
 
577870e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e0f8f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38e43b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e0f8f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38e43b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0a5a18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38e43b5
577870e
c0a5a18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38e43b5
 
c0a5a18
 
 
38e43b5
 
 
c0a5a18
 
38e43b5
 
 
 
 
 
c0a5a18
38e43b5
 
 
 
c0a5a18
38e43b5
 
c0a5a18
3e0f8f8
 
 
 
 
 
c0a5a18
3e0f8f8
 
 
 
 
 
 
 
 
 
38e43b5
3e0f8f8
 
c0a5a18
577870e
 
 
c0a5a18
 
3703473
3e0f8f8
3703473
c0a5a18
38e43b5
3703473
 
38e43b5
3703473
c0a5a18
577870e
c0a5a18
 
 
38e43b5
 
 
 
 
 
577870e
 
38e43b5
577870e
 
 
 
 
 
 
38e43b5
 
577870e
 
38e43b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e0f8f8
 
 
 
 
577870e
 
 
 
 
38e43b5
 
 
577870e
 
38e43b5
 
 
 
577870e
 
 
3e0f8f8
577870e
 
 
 
 
 
 
3e0f8f8
 
577870e
 
 
38e43b5
3e0f8f8
 
 
 
38e43b5
 
577870e
3e0f8f8
 
 
 
 
577870e
 
3e0f8f8
 
 
577870e
3e0f8f8
 
 
577870e
 
 
 
 
 
 
 
38e43b5
 
 
 
 
 
 
 
577870e
 
 
38e43b5
 
 
 
 
 
 
 
 
 
3e0f8f8
 
 
 
 
 
 
38e43b5
 
3e0f8f8
 
38e43b5
3e0f8f8
 
38e43b5
 
 
3e0f8f8
 
38e43b5
 
 
 
 
3e0f8f8
38e43b5
 
 
 
 
3e0f8f8
38e43b5
 
 
 
 
 
 
577870e
38e43b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
577870e
38e43b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
577870e
c0a5a18
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
import os
import streamlit as st
import dotenv
import openai
from openai import OpenAI
import anthropic
from together import Together
import google.generativeai as genai
import time
from typing import List, Optional, Literal, Union, Dict
from constants import (
    LLM_COUNCIL_MEMBERS,
    PROVIDER_TO_AVATAR_MAP,
    AGGREGATORS,
    LLM_TO_UI_NAME_MAP,
)
from prompts import *
from judging_dataclasses import (
    DirectAssessmentJudgingResponse,
    DirectAssessmentCriterionScore,
    DirectAssessmentCriteriaScores,
)
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np

dotenv.load_dotenv()

PASSWORD = os.getenv("APP_PASSWORD")

# Load API keys from environment variables
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ANTHROPIC_API_KEY = os.getenv("ANTHROPIC_API_KEY")
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
TOGETHER_API_KEY = os.getenv("TOGETHER_API_KEY")

# Initialize API clients
together_client = Together(api_key=TOGETHER_API_KEY)
genai.configure(api_key=GOOGLE_API_KEY)

# Set up API clients for OpenAI and Anthropic
openai.api_key = OPENAI_API_KEY
openai_client = OpenAI(
    organization="org-kUoRSK0nOw4W2nQYMVGWOt03",
    project="proj_zb6k1DdgnSEbiAEMWxSOVVu4",
)
# anthropic_client = anthropic.Client(api_key=ANTHROPIC_API_KEY)
anthropic_client = anthropic.Anthropic()

client = OpenAI()


def anthropic_streamlit_streamer(stream):
    """
    Process the Anthropic streaming response and yield content from the deltas.

    :param stream: Streaming object from Anthropic API
    :return: Yields content (text) from the streaming response.
    """
    for event in stream:
        if hasattr(event, "type"):
            # Handle content blocks
            if event.type == "content_block_delta" and hasattr(event, "delta"):
                # Extract text delta from the event
                text_delta = getattr(event.delta, "text", None)
                if text_delta:
                    yield text_delta

            # Handle message completion events (optional if needed)
            elif event.type == "message_stop":
                break  # End of message, stop streaming


def get_ui_friendly_name(llm):
    if "agg__" in llm:
        return (
            "MoA ("
            + LLM_TO_UI_NAME_MAP.get(llm.split("__")[1], llm.split("__")[1])
            + ")"
        )
    return LLM_TO_UI_NAME_MAP.get(llm, llm)


def google_streamlit_streamer(stream):
    for chunk in stream:
        yield chunk.text


def together_streamlit_streamer(stream):
    for chunk in stream:
        yield chunk.choices[0].delta.content


def llm_streamlit_streamer(stream, llm):
    if llm.startswith("anthropic"):
        return anthropic_streamlit_streamer(stream)
    elif llm.startswith("vertex"):
        return google_streamlit_streamer(stream)
    elif llm.startswith("together"):
        return together_streamlit_streamer(stream)


# Helper functions for LLM council and aggregator selection
def llm_council_selector():
    selected_council = st.radio(
        "Choose a council configuration", options=list(LLM_COUNCIL_MEMBERS.keys())
    )
    return LLM_COUNCIL_MEMBERS[selected_council]


def aggregator_selector():
    return st.radio("Choose an aggregator LLM", options=AGGREGATORS)


# API calls for different providers
def get_openai_response(model_name, prompt):
    return openai_client.chat.completions.create(
        model=model_name,
        messages=[{"role": "user", "content": prompt}],
        stream=True,
    )


# https://docs.anthropic.com/en/api/messages-streaming
def get_anthropic_response(model_name, prompt):
    return anthropic_client.messages.create(
        max_tokens=1024,
        messages=[{"role": "user", "content": prompt}],
        model=model_name,
        stream=True,
    )


def get_together_response(model_name, prompt):
    return together_client.chat.completions.create(
        model=model_name,
        messages=[{"role": "user", "content": prompt}],
        stream=True,
    )


# https://ai.google.dev/gemini-api/docs/text-generation?lang=python
def get_google_response(model_name, prompt):
    model = genai.GenerativeModel(model_name)
    return model.generate_content(prompt, stream=True)


def get_llm_response_stream(model_identifier, prompt):
    """Returns a streamlit-friendly stream of response tokens from the LLM."""
    provider, model_name = model_identifier.split("://")
    if provider == "openai":
        return get_openai_response(model_name, prompt)
    elif provider == "anthropic":
        return anthropic_streamlit_streamer(get_anthropic_response(model_name, prompt))
    elif provider == "together":
        return together_streamlit_streamer(get_together_response(model_name, prompt))
    elif provider == "vertex":
        return google_streamlit_streamer(get_google_response(model_name, prompt))
    else:
        return None


def create_dataframe_for_direct_assessment_judging_response(
    response: DirectAssessmentJudgingResponse,
):
    # Initialize empty list to collect data
    data = []

    # Loop through models
    for judging_model in response.judging_models:
        model_name = judging_model.model
        # Loop through criteria_scores
        for criteria_score in judging_model.criteria_scores:
            data.append(
                {
                    "llm_judge_model": model_name,
                    "criteria": criteria_score.criterion,
                    "score": criteria_score.score,
                    "explanation": criteria_score.explanation,
                }
            )

    # Create DataFrame
    return pd.DataFrame(data)


# Streamlit form UI
def render_criteria_form(criteria_num):
    """Render a criteria input form."""
    with st.expander(f"Criteria {criteria_num + 1}"):
        name = st.text_input(f"Name for Criteria {criteria_num + 1}")
        description = st.text_area(f"Description for Criteria {criteria_num + 1}")
        min_score = st.number_input(
            f"Min Score for Criteria {criteria_num + 1}", min_value=0, step=1
        )
        max_score = st.number_input(
            f"Max Score for Criteria {criteria_num + 1}", min_value=0, step=1
        )
    return Criteria(
        name=name, description=description, min_score=min_score, max_score=max_score
    )


def format_likert_comparison_options(options):
    return "\n".join([f"{i + 1}: {option}" for i, option in enumerate(options)])


def format_criteria_list(criteria_list):
    return "\n".join(
        [f"{criteria.name}: {criteria.description}" for criteria in criteria_list]
    )


def get_direct_assessment_prompt(
    direct_assessment_prompt, user_prompt, response, criteria_list, options
):
    return direct_assessment_prompt.format(
        user_prompt=user_prompt,
        response=response,
        criteria_list=f"{format_criteria_list(DEFAULT_DIRECT_ASSESSMENT_CRITERIA_LIST)}",
        options=f"{format_likert_comparison_options(SEVEN_POINT_DIRECT_ASSESSMENT_OPTIONS)}",
    )


def get_default_direct_assessment_prompt(user_prompt):
    return get_direct_assessment_prompt(
        direct_assessment_prompt=DEFAULT_DIRECT_ASSESSMENT_PROMPT,
        user_prompt=user_prompt,
        response="{response}",
        criteria_list=DEFAULT_DIRECT_ASSESSMENT_CRITERIA_LIST,
        options=SEVEN_POINT_DIRECT_ASSESSMENT_OPTIONS,
    )


def get_aggregator_prompt(aggregator_prompt, user_prompt, llms):
    responses_from_other_llms = "\n\n".join(
        [
            f"{get_ui_friendly_name(model)} START\n{st.session_state['responses'][model]}\n\n{get_ui_friendly_name(model)} END\n\n\n"
            for model in llms
        ]
    )
    return aggregator_prompt.format(
        user_prompt=user_prompt,
        responses_from_other_llms=responses_from_other_llms,
    )


def get_default_aggregator_prompt(user_prompt, llms):
    return get_aggregator_prompt(
        DEFAULT_AGGREGATOR_PROMPT,
        user_prompt=user_prompt,
        llms=llms,
    )


def get_parse_judging_response_for_direct_assessment_prompt(
    judging_responses: dict[str, str],
    criteria_list,
    options,
):
    formatted_judging_responses = "\n\n".join(
        [
            f"{get_ui_friendly_name(model)} START\n{judging_responses[model]}\n\n{get_ui_friendly_name(model)} END\n\n\n"
            for model in judging_responses.keys()
        ]
    )
    return PARSE_JUDGING_RESPONSE_FOR_DIRECT_ASSESSMENT_PROMPT.format(
        judging_responses=formatted_judging_responses,
        criteria_list=format_criteria_list(criteria_list),
        options=format_likert_comparison_options(options),
    )


DEBUG_MODE = True


def parse_judging_responses(
    prompt: str, judging_responses: dict[str, str]
) -> DirectAssessmentJudgingResponse:
    if DEBUG_MODE:
        return DirectAssessmentJudgingResponse(
            judging_models=[
                DirectAssessmentCriteriaScores(
                    model="together://meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
                    criteria_scores=[
                        DirectAssessmentCriterionScore(
                            criterion="helpfulness", score=3, explanation="explanation1"
                        ),
                        DirectAssessmentCriterionScore(
                            criterion="conciseness", score=4, explanation="explanation2"
                        ),
                        DirectAssessmentCriterionScore(
                            criterion="relevance", score=5, explanation="explanation3"
                        ),
                    ],
                ),
                DirectAssessmentCriteriaScores(
                    model="together://meta-llama/Llama-3.2-3B-Instruct-Turbo",
                    criteria_scores=[
                        DirectAssessmentCriterionScore(
                            criterion="helpfulness", score=1, explanation="explanation1"
                        ),
                        DirectAssessmentCriterionScore(
                            criterion="conciseness", score=2, explanation="explanation2"
                        ),
                        DirectAssessmentCriterionScore(
                            criterion="relevance", score=3, explanation="explanation3"
                        ),
                    ],
                ),
            ]
        )
    else:
        completion = client.beta.chat.completions.parse(
            model="gpt-4o-mini",
            messages=[
                {
                    "role": "system",
                    "content": "Parse the judging responses into structured data.",
                },
                {"role": "user", "content": prompt},
            ],
            response_format=DirectAssessmentJudgingResponse,
        )
        return completion.choices[0].message.parsed


def plot_criteria_scores(df):
    # Group by criteria and calculate mean and std over all judges.
    grouped = df.groupby(["criteria"]).agg({"score": ["mean", "std"]}).reset_index()

    # Flatten the MultiIndex columns
    grouped.columns = ["criteria", "mean_score", "std_score"]

    # Fill NaN std with zeros (in case there's only one score per group)
    grouped["std_score"] = grouped["std_score"].fillna(0)

    # Set up the plot
    plt.figure(figsize=(8, 5))

    # Create a horizontal bar plot
    ax = sns.barplot(
        data=grouped,
        x="mean_score",
        y="criteria",
        hue="criteria",
        errorbar=None,  # Updated parameter
        orient="h",
    )

    # Add error bars manually
    # Iterate over the bars and add error bars
    for i, (mean, std) in enumerate(zip(grouped["mean_score"], grouped["std_score"])):
        # Get the current bar
        bar = ax.patches[i]
        # Calculate the center of the bar
        center = bar.get_y() + bar.get_height() / 2
        # Add the error bar
        ax.errorbar(x=mean, y=center, xerr=std, ecolor="black", capsize=3, fmt="none")

    # Set labels and title
    ax.set_xlabel("")
    ax.set_ylabel("")
    plt.tight_layout()

    # Display the plot in Streamlit
    st.pyplot(plt.gcf())


def plot_overall_scores(overall_scores_df):
    # Calculate mean and standard deviation
    summary = (
        overall_scores_df.groupby("response_model")
        .agg({"score": ["mean", "std"]})
        .reset_index()
    )
    summary.columns = ["response_model", "mean_score", "std_score"]

    # Add UI-friendly names
    summary["ui_friendly_name"] = summary["response_model"].apply(get_ui_friendly_name)

    # Sort the summary dataframe by mean_score in descending order
    summary = summary.sort_values("mean_score", ascending=False)

    # Create the plot
    plt.figure(figsize=(8, 5))

    # Plot bars with rainbow colors
    ax = sns.barplot(
        x="ui_friendly_name",
        y="mean_score",
        data=summary,
        palette="prism",
        capsize=0.1,
    )

    # Add error bars manually
    x_coords = range(len(summary))
    plt.errorbar(
        x=x_coords,
        y=summary["mean_score"],
        yerr=summary["std_score"],
        fmt="none",
        c="black",
        capsize=5,
        zorder=10,  # Ensure error bars are on top
    )

    # Add text annotations
    for i, row in summary.iterrows():
        ax.text(
            i,
            row["mean_score"],
            f"{row['mean_score']:.2f}",
            ha="center",
            va="bottom",
            fontweight="bold",
            color="black",
            bbox=dict(facecolor="white", edgecolor="none", alpha=0.7, pad=0.5),
        )

    # Customize the plot
    plt.xlabel("")
    plt.ylabel("Overall Score")
    plt.xticks(rotation=45, ha="right")
    plt.tight_layout()

    # Display the plot in Streamlit
    st.pyplot(plt.gcf())


def plot_per_judge_overall_scores(df):
    # Find the overall score by finding the overall score for each judge, and then averaging
    # over all judges.
    grouped = df.groupby(["llm_judge_model"]).agg({"score": ["mean"]}).reset_index()
    grouped.columns = ["llm_judge_model", "overall_score"]

    # Create the horizontal bar plot
    plt.figure(figsize=(10, 6))
    ax = sns.barplot(
        data=grouped,
        y="llm_judge_model",
        x="overall_score",
        hue="llm_judge_model",
        orient="h",
    )

    # Customize the plot
    plt.title("Overall Scores by LLM Judge Model")
    plt.xlabel("Overall Score")
    plt.ylabel("LLM Judge Model")

    # Adjust layout and display the plot
    plt.tight_layout()
    st.pyplot(plt)


# Main Streamlit App
def main():
    st.set_page_config(
        page_title="Language Model Council Sandbox", page_icon="🏛️", layout="wide"
    )

    # Custom CSS for the chat display
    center_css = """
    <style>
    h1, h2, h3, h6 { text-align: center; }
    .chat-container {
        display: flex;
        align-items: flex-start;
        margin-bottom: 10px;
    }
    .avatar {
        width: 50px;
        margin-right: 10px;
    }
    .message {
        background-color: #f1f1f1;
        padding: 10px;
        border-radius: 10px;
        width: 100%;
    }
    </style>
    """
    st.markdown(center_css, unsafe_allow_html=True)

    # App title and description
    st.title("Language Model Council Sandbox")
    st.markdown("###### Invoke a council of LLMs to judge each other's responses.")
    st.markdown("###### [Paper](https://arxiv.org/abs/2406.08598)")

    # Authentication system
    if "authenticated" not in st.session_state:
        st.session_state.authenticated = False

    cols = st.columns([2, 1, 2])
    if not st.session_state.authenticated:
        with cols[1]:
            password = st.text_input("Password", type="password")
            if st.button("Login", use_container_width=True):
                if password == PASSWORD:
                    st.session_state.authenticated = True
                else:
                    st.error("Invalid credentials")

    if st.session_state.authenticated:
        # cols[1].success("Logged in successfully!")
        st.markdown("#### LLM Council Member Selection")

        # Council and aggregator selection
        selected_models = llm_council_selector()

        # st.write("Selected Models:", selected_models)

        selected_aggregator = aggregator_selector()

        # Initialize session state for collecting responses.
        if "responses" not in st.session_state:
            st.session_state.responses = {}
        # if "aggregator_response" not in st.session_state:
        # st.session_state.aggregator_response = {}

        # Prompt input
        st.markdown("#### Enter your prompt")
        _, center_column, _ = st.columns([3, 5, 3])
        with center_column:
            user_prompt = st.text_area(value="Say 'Hello World'", label="")

        if center_column.button("Submit", use_container_width=True):
            st.markdown("#### Responses")

            response_columns = st.columns(3)

            selected_models_to_streamlit_column_map = {
                model: response_columns[i] for i, model in enumerate(selected_models)
            }

            # Fetching and streaming responses from each selected model
            for selected_model in selected_models:
                with selected_models_to_streamlit_column_map[selected_model]:
                    st.write(get_ui_friendly_name(selected_model))
                    with st.chat_message(
                        selected_model,
                        avatar=PROVIDER_TO_AVATAR_MAP[selected_model],
                    ):
                        message_placeholder = st.empty()
                        stream = get_llm_response_stream(selected_model, user_prompt)
                        if stream:
                            st.session_state["responses"][selected_model] = (
                                message_placeholder.write_stream(stream)
                            )

            # Get the aggregator prompt.
            aggregator_prompt = get_default_aggregator_prompt(
                user_prompt=user_prompt, llms=selected_models
            )

            with st.expander("Aggregator Prompt"):
                st.code(aggregator_prompt)

            # Fetching and streaming response from the aggregator
            st.write(f"Mixture-of-Agents ({get_ui_friendly_name(selected_aggregator)})")
            with st.chat_message(
                selected_aggregator,
                avatar="img/council_icon.png",
            ):
                message_placeholder = st.empty()
                aggregator_stream = get_llm_response_stream(
                    selected_aggregator, aggregator_prompt
                )
                if aggregator_stream:
                    st.session_state["responses"]["agg__" + selected_aggregator] = (
                        message_placeholder.write_stream(aggregator_stream)
                    )

        # st.write("Responses (in session state):")
        # st.write(st.session_state["responses"])

        # Judging.
        st.markdown("#### Judging Configuration")

        # Choose the type of assessment
        assessment_type = st.radio(
            "Select the type of assessment",
            options=["Direct Assessment", "Pairwise Comparison"],
        )

        _, center_column, _ = st.columns([3, 5, 3])

        # Depending on the assessment type, render different forms
        if assessment_type == "Direct Assessment":

            # Initialize session state for direct assessment.
            if "direct_assessment_overall_score" not in st.session_state:
                st.session_state["direct_assessment_overall_score"] = {}
            if "direct_assessment_judging_df" not in st.session_state:
                st.session_state["direct_assessment_judging_df"] = {}
                for response_model in selected_models:
                    st.session_state["direct_assessment_judging_df"][
                        response_model
                    ] = {}
                # aggregator model
                st.session_state["direct_assessment_judging_df"][
                    "agg__" + selected_aggregator
                ] = {}
            if "direct_assessment_judging_responses" not in st.session_state:
                st.session_state["direct_assessment_judging_responses"] = {}
                for response_model in selected_models:
                    st.session_state["direct_assessment_judging_responses"][
                        response_model
                    ] = {}
                # aggregator model
                st.session_state["direct_assessment_judging_responses"][
                    "agg__" + selected_aggregator
                ] = {}
            if "direct_assessment_overall_scores" not in st.session_state:
                st.session_state["direct_assessment_overall_scores"] = {}
                for response_model in selected_models:
                    st.session_state["direct_assessment_overall_scores"][
                        response_model
                    ] = {}
                st.session_state["direct_assessment_overall_scores"][
                    "agg__" + selected_aggregator
                ] = {}
            if "judging_status" not in st.session_state:
                st.session_state["judging_status"] = "incomplete"

            # Direct assessment prompt.
            with center_column.expander("Direct Assessment Prompt"):
                direct_assessment_prompt = st.text_area(
                    "Prompt for the Direct Assessment",
                    value=get_default_direct_assessment_prompt(user_prompt=user_prompt),
                    height=500,
                )

            # TODO: Add option to edit criteria list with a basic text field.
            criteria_list = DEFAULT_DIRECT_ASSESSMENT_CRITERIA_LIST

            # Create DirectAssessment object when form is submitted
            if center_column.button(
                "Submit Direct Assessment", use_container_width=True
            ):

                # Submit direct asssessment.
                responses_for_judging = st.session_state["responses"]

                # st.write("Responses for judging (in session state):")
                # st.write(responses_for_judging)

                response_judging_columns = st.columns(3)

                responses_for_judging_to_streamlit_column_map = {
                    model: response_judging_columns[i % 3]
                    for i, model in enumerate(responses_for_judging.keys())
                }

                # Get judging responses.
                for response_model, response in responses_for_judging.items():

                    st_column = responses_for_judging_to_streamlit_column_map[
                        response_model
                    ]

                    with st_column:
                        if "agg__" in response_model:
                            judging_model_header = "Mixture-of-Agents Response"
                        else:
                            judging_model_header = get_ui_friendly_name(response_model)
                        st.write(f"Judging for {judging_model_header}")
                        # st.write("Response being judged: ")
                        # st.write(response)
                        judging_prompt = get_direct_assessment_prompt(
                            direct_assessment_prompt=direct_assessment_prompt,
                            user_prompt=user_prompt,
                            response=response,
                            criteria_list=criteria_list,
                            options=SEVEN_POINT_DIRECT_ASSESSMENT_OPTIONS,
                        )

                        with st.expander("Final Judging Prompt"):
                            st.code(judging_prompt)

                        for judging_model in selected_models:
                            with st.expander(
                                get_ui_friendly_name(judging_model), expanded=False
                            ):
                                with st.chat_message(
                                    judging_model,
                                    avatar=PROVIDER_TO_AVATAR_MAP[judging_model],
                                ):
                                    message_placeholder = st.empty()
                                    judging_stream = get_llm_response_stream(
                                        judging_model, judging_prompt
                                    )
                                    # if judging_stream:
                                    st.session_state[
                                        "direct_assessment_judging_responses"
                                    ][response_model][
                                        judging_model
                                    ] = message_placeholder.write_stream(
                                        judging_stream
                                    )
                        # When all of the judging is finished for the given response, get the actual
                        # values, parsed (use gpt-4o-mini for now) with json mode.
                        # TODO.
                        judging_responses = st.session_state[
                            "direct_assessment_judging_responses"
                        ][response_model]

                        # st.write("Judging responses (in session state):")
                        # st.write(judging_responses)

                        if not judging_responses:
                            st.error(f"No judging responses for {response_model}")
                            quit()
                        parse_judging_response_prompt = (
                            get_parse_judging_response_for_direct_assessment_prompt(
                                judging_responses,
                                criteria_list,
                                SEVEN_POINT_DIRECT_ASSESSMENT_OPTIONS,
                            )
                        )
                        with st.expander("Parse Judging Response Prompt"):
                            st.code(parse_judging_response_prompt)
                        # Issue the prompt to openai mini with structured outputs
                        parsed_judging_responses = parse_judging_responses(
                            parse_judging_response_prompt, judging_responses
                        )

                        st.session_state["direct_assessment_judging_df"][
                            response_model
                        ] = create_dataframe_for_direct_assessment_judging_response(
                            parsed_judging_responses
                        )
                        st.write(
                            st.session_state["direct_assessment_judging_df"][
                                response_model
                            ]
                        )

                        plot_criteria_scores(
                            st.session_state["direct_assessment_judging_df"][
                                response_model
                            ]
                        )

                        # Find the overall score by finding the overall score for each judge, and then averaging
                        # over all judges.
                        plot_per_judge_overall_scores(
                            st.session_state["direct_assessment_judging_df"][
                                response_model
                            ]
                        )

                        grouped = (
                            st.session_state["direct_assessment_judging_df"][
                                response_model
                            ]
                            .groupby(["llm_judge_model"])
                            .agg({"score": ["mean"]})
                            .reset_index()
                        )
                        grouped.columns = ["llm_judge_model", "overall_score"]

                        # st.write(
                        #     "Extracting overall scores from this grouped dataframe:"
                        # )
                        # st.write(grouped)

                        # Save the overall scores to the session state.
                        for record in grouped.to_dict(orient="records"):
                            st.session_state["direct_assessment_overall_scores"][
                                response_model
                            ][record["llm_judge_model"]] = record["overall_score"]

                        overall_score = grouped["overall_score"].mean()
                        controversy = grouped["overall_score"].std()
                        st.write(f"Overall Score: {overall_score:.2f}")
                        st.write(f"Controversy: {controversy:.2f}")

                st.session_state["judging_status"] = "complete"

            # Judging is complete.
            st.write("#### Results")
            # The session state now contains the overall scores for each response from each judge.
            if st.session_state["judging_status"] == "complete":
                overall_scores_df_raw = pd.DataFrame(
                    st.session_state["direct_assessment_overall_scores"]
                ).reset_index()

                overall_scores_df = pd.melt(
                    overall_scores_df_raw,
                    id_vars=["index"],
                    var_name="response_model",
                    value_name="score",
                ).rename(columns={"index": "judging_model"})

                # Print the overall winner.
                overall_winner = overall_scores_df.loc[
                    overall_scores_df["score"].idxmax()
                ]

                st.write(
                    f"**Overall Winner:** {get_ui_friendly_name(overall_winner['response_model'])}"
                )
                # Find how much the standard deviation overlaps with other models.
                # Calculate separability.
                # TODO.
                st.write(f"**Confidence:** {overall_winner['score']:.2f}")

                left_column, right_column = st.columns([1, 1])
                with left_column:
                    plot_overall_scores(overall_scores_df)

                with right_column:
                    st.dataframe(overall_scores_df)

        elif assessment_type == "Pairwise Comparison":
            pass
            # pairwise_comparison_prompt = st.text_area(
            #     "Prompt for the Pairwise Comparison"
            # )
            # granularity = st.selectbox("Granularity", ["coarse", "fine", "super fine"])
            # ties_allowed = st.checkbox("Are ties allowed?")
            # position_swapping = st.checkbox("Enable position swapping?")
            # reference_model = st.text_input("Reference Model")

            # # Create PairwiseComparison object when form is submitted
            # if st.button("Submit Pairwise Comparison"):
            #     pairwise_comparison_config = PairwiseComparison(
            #         type="pairwise_comparison",
            #         granularity=granularity,
            #         ties_allowed=ties_allowed,
            #         position_swapping=position_swapping,
            #         reference_model=reference_model,
            #         prompt=prompt,
            #     )
            #     st.success(f"Pairwise Comparison Created: {pairwise_comparison_config}")
            #     # Submit pairwise comparison.
            #     responses_for_judging = st.session_state["responses"]

    else:
        with cols[1]:
            st.warning("Please log in to access this app.")


if __name__ == "__main__":
    main()