Spaces:
Sleeping
Sleeping
File size: 31,565 Bytes
cf367e2 663a6db cf367e2 c0a5a18 3e0f8f8 577870e 3e0f8f8 577870e 38e43b5 3e0f8f8 38e43b5 663a6db cf367e2 c0a5a18 3e0f8f8 c0a5a18 38e43b5 c0a5a18 577870e c0a5a18 577870e c0a5a18 577870e c0a5a18 577870e c0a5a18 577870e c0a5a18 3e0f8f8 577870e 3e0f8f8 577870e 3e0f8f8 577870e 3e0f8f8 38e43b5 3e0f8f8 577870e 3e0f8f8 38e43b5 3e0f8f8 38e43b5 c0a5a18 38e43b5 577870e c0a5a18 38e43b5 c0a5a18 38e43b5 c0a5a18 38e43b5 c0a5a18 38e43b5 c0a5a18 38e43b5 c0a5a18 3e0f8f8 c0a5a18 3e0f8f8 38e43b5 3e0f8f8 c0a5a18 577870e c0a5a18 3703473 3e0f8f8 3703473 c0a5a18 38e43b5 3703473 38e43b5 3703473 c0a5a18 577870e c0a5a18 38e43b5 577870e 38e43b5 577870e 38e43b5 577870e 38e43b5 3e0f8f8 577870e 38e43b5 577870e 38e43b5 577870e 3e0f8f8 577870e 3e0f8f8 577870e 38e43b5 3e0f8f8 38e43b5 577870e 3e0f8f8 577870e 3e0f8f8 577870e 3e0f8f8 577870e 38e43b5 577870e 38e43b5 3e0f8f8 38e43b5 3e0f8f8 38e43b5 3e0f8f8 38e43b5 3e0f8f8 38e43b5 3e0f8f8 38e43b5 3e0f8f8 38e43b5 577870e 38e43b5 577870e 38e43b5 577870e c0a5a18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 |
import os
import streamlit as st
import dotenv
import openai
from openai import OpenAI
import anthropic
from together import Together
import google.generativeai as genai
import time
from typing import List, Optional, Literal, Union, Dict
from constants import (
LLM_COUNCIL_MEMBERS,
PROVIDER_TO_AVATAR_MAP,
AGGREGATORS,
LLM_TO_UI_NAME_MAP,
)
from prompts import *
from judging_dataclasses import (
DirectAssessmentJudgingResponse,
DirectAssessmentCriterionScore,
DirectAssessmentCriteriaScores,
)
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
dotenv.load_dotenv()
PASSWORD = os.getenv("APP_PASSWORD")
# Load API keys from environment variables
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ANTHROPIC_API_KEY = os.getenv("ANTHROPIC_API_KEY")
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
TOGETHER_API_KEY = os.getenv("TOGETHER_API_KEY")
# Initialize API clients
together_client = Together(api_key=TOGETHER_API_KEY)
genai.configure(api_key=GOOGLE_API_KEY)
# Set up API clients for OpenAI and Anthropic
openai.api_key = OPENAI_API_KEY
openai_client = OpenAI(
organization="org-kUoRSK0nOw4W2nQYMVGWOt03",
project="proj_zb6k1DdgnSEbiAEMWxSOVVu4",
)
# anthropic_client = anthropic.Client(api_key=ANTHROPIC_API_KEY)
anthropic_client = anthropic.Anthropic()
client = OpenAI()
def anthropic_streamlit_streamer(stream):
"""
Process the Anthropic streaming response and yield content from the deltas.
:param stream: Streaming object from Anthropic API
:return: Yields content (text) from the streaming response.
"""
for event in stream:
if hasattr(event, "type"):
# Handle content blocks
if event.type == "content_block_delta" and hasattr(event, "delta"):
# Extract text delta from the event
text_delta = getattr(event.delta, "text", None)
if text_delta:
yield text_delta
# Handle message completion events (optional if needed)
elif event.type == "message_stop":
break # End of message, stop streaming
def get_ui_friendly_name(llm):
if "agg__" in llm:
return (
"MoA ("
+ LLM_TO_UI_NAME_MAP.get(llm.split("__")[1], llm.split("__")[1])
+ ")"
)
return LLM_TO_UI_NAME_MAP.get(llm, llm)
def google_streamlit_streamer(stream):
for chunk in stream:
yield chunk.text
def together_streamlit_streamer(stream):
for chunk in stream:
yield chunk.choices[0].delta.content
def llm_streamlit_streamer(stream, llm):
if llm.startswith("anthropic"):
return anthropic_streamlit_streamer(stream)
elif llm.startswith("vertex"):
return google_streamlit_streamer(stream)
elif llm.startswith("together"):
return together_streamlit_streamer(stream)
# Helper functions for LLM council and aggregator selection
def llm_council_selector():
selected_council = st.radio(
"Choose a council configuration", options=list(LLM_COUNCIL_MEMBERS.keys())
)
return LLM_COUNCIL_MEMBERS[selected_council]
def aggregator_selector():
return st.radio("Choose an aggregator LLM", options=AGGREGATORS)
# API calls for different providers
def get_openai_response(model_name, prompt):
return openai_client.chat.completions.create(
model=model_name,
messages=[{"role": "user", "content": prompt}],
stream=True,
)
# https://docs.anthropic.com/en/api/messages-streaming
def get_anthropic_response(model_name, prompt):
return anthropic_client.messages.create(
max_tokens=1024,
messages=[{"role": "user", "content": prompt}],
model=model_name,
stream=True,
)
def get_together_response(model_name, prompt):
return together_client.chat.completions.create(
model=model_name,
messages=[{"role": "user", "content": prompt}],
stream=True,
)
# https://ai.google.dev/gemini-api/docs/text-generation?lang=python
def get_google_response(model_name, prompt):
model = genai.GenerativeModel(model_name)
return model.generate_content(prompt, stream=True)
def get_llm_response_stream(model_identifier, prompt):
"""Returns a streamlit-friendly stream of response tokens from the LLM."""
provider, model_name = model_identifier.split("://")
if provider == "openai":
return get_openai_response(model_name, prompt)
elif provider == "anthropic":
return anthropic_streamlit_streamer(get_anthropic_response(model_name, prompt))
elif provider == "together":
return together_streamlit_streamer(get_together_response(model_name, prompt))
elif provider == "vertex":
return google_streamlit_streamer(get_google_response(model_name, prompt))
else:
return None
def create_dataframe_for_direct_assessment_judging_response(
response: DirectAssessmentJudgingResponse,
):
# Initialize empty list to collect data
data = []
# Loop through models
for judging_model in response.judging_models:
model_name = judging_model.model
# Loop through criteria_scores
for criteria_score in judging_model.criteria_scores:
data.append(
{
"llm_judge_model": model_name,
"criteria": criteria_score.criterion,
"score": criteria_score.score,
"explanation": criteria_score.explanation,
}
)
# Create DataFrame
return pd.DataFrame(data)
# Streamlit form UI
def render_criteria_form(criteria_num):
"""Render a criteria input form."""
with st.expander(f"Criteria {criteria_num + 1}"):
name = st.text_input(f"Name for Criteria {criteria_num + 1}")
description = st.text_area(f"Description for Criteria {criteria_num + 1}")
min_score = st.number_input(
f"Min Score for Criteria {criteria_num + 1}", min_value=0, step=1
)
max_score = st.number_input(
f"Max Score for Criteria {criteria_num + 1}", min_value=0, step=1
)
return Criteria(
name=name, description=description, min_score=min_score, max_score=max_score
)
def format_likert_comparison_options(options):
return "\n".join([f"{i + 1}: {option}" for i, option in enumerate(options)])
def format_criteria_list(criteria_list):
return "\n".join(
[f"{criteria.name}: {criteria.description}" for criteria in criteria_list]
)
def get_direct_assessment_prompt(
direct_assessment_prompt, user_prompt, response, criteria_list, options
):
return direct_assessment_prompt.format(
user_prompt=user_prompt,
response=response,
criteria_list=f"{format_criteria_list(DEFAULT_DIRECT_ASSESSMENT_CRITERIA_LIST)}",
options=f"{format_likert_comparison_options(SEVEN_POINT_DIRECT_ASSESSMENT_OPTIONS)}",
)
def get_default_direct_assessment_prompt(user_prompt):
return get_direct_assessment_prompt(
direct_assessment_prompt=DEFAULT_DIRECT_ASSESSMENT_PROMPT,
user_prompt=user_prompt,
response="{response}",
criteria_list=DEFAULT_DIRECT_ASSESSMENT_CRITERIA_LIST,
options=SEVEN_POINT_DIRECT_ASSESSMENT_OPTIONS,
)
def get_aggregator_prompt(aggregator_prompt, user_prompt, llms):
responses_from_other_llms = "\n\n".join(
[
f"{get_ui_friendly_name(model)} START\n{st.session_state['responses'][model]}\n\n{get_ui_friendly_name(model)} END\n\n\n"
for model in llms
]
)
return aggregator_prompt.format(
user_prompt=user_prompt,
responses_from_other_llms=responses_from_other_llms,
)
def get_default_aggregator_prompt(user_prompt, llms):
return get_aggregator_prompt(
DEFAULT_AGGREGATOR_PROMPT,
user_prompt=user_prompt,
llms=llms,
)
def get_parse_judging_response_for_direct_assessment_prompt(
judging_responses: dict[str, str],
criteria_list,
options,
):
formatted_judging_responses = "\n\n".join(
[
f"{get_ui_friendly_name(model)} START\n{judging_responses[model]}\n\n{get_ui_friendly_name(model)} END\n\n\n"
for model in judging_responses.keys()
]
)
return PARSE_JUDGING_RESPONSE_FOR_DIRECT_ASSESSMENT_PROMPT.format(
judging_responses=formatted_judging_responses,
criteria_list=format_criteria_list(criteria_list),
options=format_likert_comparison_options(options),
)
DEBUG_MODE = True
def parse_judging_responses(
prompt: str, judging_responses: dict[str, str]
) -> DirectAssessmentJudgingResponse:
if DEBUG_MODE:
return DirectAssessmentJudgingResponse(
judging_models=[
DirectAssessmentCriteriaScores(
model="together://meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
criteria_scores=[
DirectAssessmentCriterionScore(
criterion="helpfulness", score=3, explanation="explanation1"
),
DirectAssessmentCriterionScore(
criterion="conciseness", score=4, explanation="explanation2"
),
DirectAssessmentCriterionScore(
criterion="relevance", score=5, explanation="explanation3"
),
],
),
DirectAssessmentCriteriaScores(
model="together://meta-llama/Llama-3.2-3B-Instruct-Turbo",
criteria_scores=[
DirectAssessmentCriterionScore(
criterion="helpfulness", score=1, explanation="explanation1"
),
DirectAssessmentCriterionScore(
criterion="conciseness", score=2, explanation="explanation2"
),
DirectAssessmentCriterionScore(
criterion="relevance", score=3, explanation="explanation3"
),
],
),
]
)
else:
completion = client.beta.chat.completions.parse(
model="gpt-4o-mini",
messages=[
{
"role": "system",
"content": "Parse the judging responses into structured data.",
},
{"role": "user", "content": prompt},
],
response_format=DirectAssessmentJudgingResponse,
)
return completion.choices[0].message.parsed
def plot_criteria_scores(df):
# Group by criteria and calculate mean and std over all judges.
grouped = df.groupby(["criteria"]).agg({"score": ["mean", "std"]}).reset_index()
# Flatten the MultiIndex columns
grouped.columns = ["criteria", "mean_score", "std_score"]
# Fill NaN std with zeros (in case there's only one score per group)
grouped["std_score"] = grouped["std_score"].fillna(0)
# Set up the plot
plt.figure(figsize=(8, 5))
# Create a horizontal bar plot
ax = sns.barplot(
data=grouped,
x="mean_score",
y="criteria",
hue="criteria",
errorbar=None, # Updated parameter
orient="h",
)
# Add error bars manually
# Iterate over the bars and add error bars
for i, (mean, std) in enumerate(zip(grouped["mean_score"], grouped["std_score"])):
# Get the current bar
bar = ax.patches[i]
# Calculate the center of the bar
center = bar.get_y() + bar.get_height() / 2
# Add the error bar
ax.errorbar(x=mean, y=center, xerr=std, ecolor="black", capsize=3, fmt="none")
# Set labels and title
ax.set_xlabel("")
ax.set_ylabel("")
plt.tight_layout()
# Display the plot in Streamlit
st.pyplot(plt.gcf())
def plot_overall_scores(overall_scores_df):
# Calculate mean and standard deviation
summary = (
overall_scores_df.groupby("response_model")
.agg({"score": ["mean", "std"]})
.reset_index()
)
summary.columns = ["response_model", "mean_score", "std_score"]
# Add UI-friendly names
summary["ui_friendly_name"] = summary["response_model"].apply(get_ui_friendly_name)
# Sort the summary dataframe by mean_score in descending order
summary = summary.sort_values("mean_score", ascending=False)
# Create the plot
plt.figure(figsize=(8, 5))
# Plot bars with rainbow colors
ax = sns.barplot(
x="ui_friendly_name",
y="mean_score",
data=summary,
palette="prism",
capsize=0.1,
)
# Add error bars manually
x_coords = range(len(summary))
plt.errorbar(
x=x_coords,
y=summary["mean_score"],
yerr=summary["std_score"],
fmt="none",
c="black",
capsize=5,
zorder=10, # Ensure error bars are on top
)
# Add text annotations
for i, row in summary.iterrows():
ax.text(
i,
row["mean_score"],
f"{row['mean_score']:.2f}",
ha="center",
va="bottom",
fontweight="bold",
color="black",
bbox=dict(facecolor="white", edgecolor="none", alpha=0.7, pad=0.5),
)
# Customize the plot
plt.xlabel("")
plt.ylabel("Overall Score")
plt.xticks(rotation=45, ha="right")
plt.tight_layout()
# Display the plot in Streamlit
st.pyplot(plt.gcf())
def plot_per_judge_overall_scores(df):
# Find the overall score by finding the overall score for each judge, and then averaging
# over all judges.
grouped = df.groupby(["llm_judge_model"]).agg({"score": ["mean"]}).reset_index()
grouped.columns = ["llm_judge_model", "overall_score"]
# Create the horizontal bar plot
plt.figure(figsize=(10, 6))
ax = sns.barplot(
data=grouped,
y="llm_judge_model",
x="overall_score",
hue="llm_judge_model",
orient="h",
)
# Customize the plot
plt.title("Overall Scores by LLM Judge Model")
plt.xlabel("Overall Score")
plt.ylabel("LLM Judge Model")
# Adjust layout and display the plot
plt.tight_layout()
st.pyplot(plt)
# Main Streamlit App
def main():
st.set_page_config(
page_title="Language Model Council Sandbox", page_icon="🏛️", layout="wide"
)
# Custom CSS for the chat display
center_css = """
<style>
h1, h2, h3, h6 { text-align: center; }
.chat-container {
display: flex;
align-items: flex-start;
margin-bottom: 10px;
}
.avatar {
width: 50px;
margin-right: 10px;
}
.message {
background-color: #f1f1f1;
padding: 10px;
border-radius: 10px;
width: 100%;
}
</style>
"""
st.markdown(center_css, unsafe_allow_html=True)
# App title and description
st.title("Language Model Council Sandbox")
st.markdown("###### Invoke a council of LLMs to judge each other's responses.")
st.markdown("###### [Paper](https://arxiv.org/abs/2406.08598)")
# Authentication system
if "authenticated" not in st.session_state:
st.session_state.authenticated = False
cols = st.columns([2, 1, 2])
if not st.session_state.authenticated:
with cols[1]:
password = st.text_input("Password", type="password")
if st.button("Login", use_container_width=True):
if password == PASSWORD:
st.session_state.authenticated = True
else:
st.error("Invalid credentials")
if st.session_state.authenticated:
# cols[1].success("Logged in successfully!")
st.markdown("#### LLM Council Member Selection")
# Council and aggregator selection
selected_models = llm_council_selector()
# st.write("Selected Models:", selected_models)
selected_aggregator = aggregator_selector()
# Initialize session state for collecting responses.
if "responses" not in st.session_state:
st.session_state.responses = {}
# if "aggregator_response" not in st.session_state:
# st.session_state.aggregator_response = {}
# Prompt input
st.markdown("#### Enter your prompt")
_, center_column, _ = st.columns([3, 5, 3])
with center_column:
user_prompt = st.text_area(value="Say 'Hello World'", label="")
if center_column.button("Submit", use_container_width=True):
st.markdown("#### Responses")
response_columns = st.columns(3)
selected_models_to_streamlit_column_map = {
model: response_columns[i] for i, model in enumerate(selected_models)
}
# Fetching and streaming responses from each selected model
for selected_model in selected_models:
with selected_models_to_streamlit_column_map[selected_model]:
st.write(get_ui_friendly_name(selected_model))
with st.chat_message(
selected_model,
avatar=PROVIDER_TO_AVATAR_MAP[selected_model],
):
message_placeholder = st.empty()
stream = get_llm_response_stream(selected_model, user_prompt)
if stream:
st.session_state["responses"][selected_model] = (
message_placeholder.write_stream(stream)
)
# Get the aggregator prompt.
aggregator_prompt = get_default_aggregator_prompt(
user_prompt=user_prompt, llms=selected_models
)
with st.expander("Aggregator Prompt"):
st.code(aggregator_prompt)
# Fetching and streaming response from the aggregator
st.write(f"Mixture-of-Agents ({get_ui_friendly_name(selected_aggregator)})")
with st.chat_message(
selected_aggregator,
avatar="img/council_icon.png",
):
message_placeholder = st.empty()
aggregator_stream = get_llm_response_stream(
selected_aggregator, aggregator_prompt
)
if aggregator_stream:
st.session_state["responses"]["agg__" + selected_aggregator] = (
message_placeholder.write_stream(aggregator_stream)
)
# st.write("Responses (in session state):")
# st.write(st.session_state["responses"])
# Judging.
st.markdown("#### Judging Configuration")
# Choose the type of assessment
assessment_type = st.radio(
"Select the type of assessment",
options=["Direct Assessment", "Pairwise Comparison"],
)
_, center_column, _ = st.columns([3, 5, 3])
# Depending on the assessment type, render different forms
if assessment_type == "Direct Assessment":
# Initialize session state for direct assessment.
if "direct_assessment_overall_score" not in st.session_state:
st.session_state["direct_assessment_overall_score"] = {}
if "direct_assessment_judging_df" not in st.session_state:
st.session_state["direct_assessment_judging_df"] = {}
for response_model in selected_models:
st.session_state["direct_assessment_judging_df"][
response_model
] = {}
# aggregator model
st.session_state["direct_assessment_judging_df"][
"agg__" + selected_aggregator
] = {}
if "direct_assessment_judging_responses" not in st.session_state:
st.session_state["direct_assessment_judging_responses"] = {}
for response_model in selected_models:
st.session_state["direct_assessment_judging_responses"][
response_model
] = {}
# aggregator model
st.session_state["direct_assessment_judging_responses"][
"agg__" + selected_aggregator
] = {}
if "direct_assessment_overall_scores" not in st.session_state:
st.session_state["direct_assessment_overall_scores"] = {}
for response_model in selected_models:
st.session_state["direct_assessment_overall_scores"][
response_model
] = {}
st.session_state["direct_assessment_overall_scores"][
"agg__" + selected_aggregator
] = {}
if "judging_status" not in st.session_state:
st.session_state["judging_status"] = "incomplete"
# Direct assessment prompt.
with center_column.expander("Direct Assessment Prompt"):
direct_assessment_prompt = st.text_area(
"Prompt for the Direct Assessment",
value=get_default_direct_assessment_prompt(user_prompt=user_prompt),
height=500,
)
# TODO: Add option to edit criteria list with a basic text field.
criteria_list = DEFAULT_DIRECT_ASSESSMENT_CRITERIA_LIST
# Create DirectAssessment object when form is submitted
if center_column.button(
"Submit Direct Assessment", use_container_width=True
):
# Submit direct asssessment.
responses_for_judging = st.session_state["responses"]
# st.write("Responses for judging (in session state):")
# st.write(responses_for_judging)
response_judging_columns = st.columns(3)
responses_for_judging_to_streamlit_column_map = {
model: response_judging_columns[i % 3]
for i, model in enumerate(responses_for_judging.keys())
}
# Get judging responses.
for response_model, response in responses_for_judging.items():
st_column = responses_for_judging_to_streamlit_column_map[
response_model
]
with st_column:
if "agg__" in response_model:
judging_model_header = "Mixture-of-Agents Response"
else:
judging_model_header = get_ui_friendly_name(response_model)
st.write(f"Judging for {judging_model_header}")
# st.write("Response being judged: ")
# st.write(response)
judging_prompt = get_direct_assessment_prompt(
direct_assessment_prompt=direct_assessment_prompt,
user_prompt=user_prompt,
response=response,
criteria_list=criteria_list,
options=SEVEN_POINT_DIRECT_ASSESSMENT_OPTIONS,
)
with st.expander("Final Judging Prompt"):
st.code(judging_prompt)
for judging_model in selected_models:
with st.expander(
get_ui_friendly_name(judging_model), expanded=False
):
with st.chat_message(
judging_model,
avatar=PROVIDER_TO_AVATAR_MAP[judging_model],
):
message_placeholder = st.empty()
judging_stream = get_llm_response_stream(
judging_model, judging_prompt
)
# if judging_stream:
st.session_state[
"direct_assessment_judging_responses"
][response_model][
judging_model
] = message_placeholder.write_stream(
judging_stream
)
# When all of the judging is finished for the given response, get the actual
# values, parsed (use gpt-4o-mini for now) with json mode.
# TODO.
judging_responses = st.session_state[
"direct_assessment_judging_responses"
][response_model]
# st.write("Judging responses (in session state):")
# st.write(judging_responses)
if not judging_responses:
st.error(f"No judging responses for {response_model}")
quit()
parse_judging_response_prompt = (
get_parse_judging_response_for_direct_assessment_prompt(
judging_responses,
criteria_list,
SEVEN_POINT_DIRECT_ASSESSMENT_OPTIONS,
)
)
with st.expander("Parse Judging Response Prompt"):
st.code(parse_judging_response_prompt)
# Issue the prompt to openai mini with structured outputs
parsed_judging_responses = parse_judging_responses(
parse_judging_response_prompt, judging_responses
)
st.session_state["direct_assessment_judging_df"][
response_model
] = create_dataframe_for_direct_assessment_judging_response(
parsed_judging_responses
)
st.write(
st.session_state["direct_assessment_judging_df"][
response_model
]
)
plot_criteria_scores(
st.session_state["direct_assessment_judging_df"][
response_model
]
)
# Find the overall score by finding the overall score for each judge, and then averaging
# over all judges.
plot_per_judge_overall_scores(
st.session_state["direct_assessment_judging_df"][
response_model
]
)
grouped = (
st.session_state["direct_assessment_judging_df"][
response_model
]
.groupby(["llm_judge_model"])
.agg({"score": ["mean"]})
.reset_index()
)
grouped.columns = ["llm_judge_model", "overall_score"]
# st.write(
# "Extracting overall scores from this grouped dataframe:"
# )
# st.write(grouped)
# Save the overall scores to the session state.
for record in grouped.to_dict(orient="records"):
st.session_state["direct_assessment_overall_scores"][
response_model
][record["llm_judge_model"]] = record["overall_score"]
overall_score = grouped["overall_score"].mean()
controversy = grouped["overall_score"].std()
st.write(f"Overall Score: {overall_score:.2f}")
st.write(f"Controversy: {controversy:.2f}")
st.session_state["judging_status"] = "complete"
# Judging is complete.
st.write("#### Results")
# The session state now contains the overall scores for each response from each judge.
if st.session_state["judging_status"] == "complete":
overall_scores_df_raw = pd.DataFrame(
st.session_state["direct_assessment_overall_scores"]
).reset_index()
overall_scores_df = pd.melt(
overall_scores_df_raw,
id_vars=["index"],
var_name="response_model",
value_name="score",
).rename(columns={"index": "judging_model"})
# Print the overall winner.
overall_winner = overall_scores_df.loc[
overall_scores_df["score"].idxmax()
]
st.write(
f"**Overall Winner:** {get_ui_friendly_name(overall_winner['response_model'])}"
)
# Find how much the standard deviation overlaps with other models.
# Calculate separability.
# TODO.
st.write(f"**Confidence:** {overall_winner['score']:.2f}")
left_column, right_column = st.columns([1, 1])
with left_column:
plot_overall_scores(overall_scores_df)
with right_column:
st.dataframe(overall_scores_df)
elif assessment_type == "Pairwise Comparison":
pass
# pairwise_comparison_prompt = st.text_area(
# "Prompt for the Pairwise Comparison"
# )
# granularity = st.selectbox("Granularity", ["coarse", "fine", "super fine"])
# ties_allowed = st.checkbox("Are ties allowed?")
# position_swapping = st.checkbox("Enable position swapping?")
# reference_model = st.text_input("Reference Model")
# # Create PairwiseComparison object when form is submitted
# if st.button("Submit Pairwise Comparison"):
# pairwise_comparison_config = PairwiseComparison(
# type="pairwise_comparison",
# granularity=granularity,
# ties_allowed=ties_allowed,
# position_swapping=position_swapping,
# reference_model=reference_model,
# prompt=prompt,
# )
# st.success(f"Pairwise Comparison Created: {pairwise_comparison_config}")
# # Submit pairwise comparison.
# responses_for_judging = st.session_state["responses"]
else:
with cols[1]:
st.warning("Please log in to access this app.")
if __name__ == "__main__":
main()
|