Spaces:
Sleeping
Sleeping
File size: 40,213 Bytes
cf367e2 663a6db cf367e2 c0a5a18 6fae7e2 3e0f8f8 577870e 3e0f8f8 577870e 38e43b5 eb4ec23 38e43b5 3e0f8f8 38e43b5 663a6db cf367e2 c0a5a18 3e0f8f8 c0a5a18 6fae7e2 c0a5a18 1afb9ca c0a5a18 38e43b5 c0a5a18 6fae7e2 c0a5a18 1afb9ca 6fae7e2 c0a5a18 6fae7e2 c0a5a18 1afb9ca c0a5a18 577870e c0a5a18 1afb9ca c0a5a18 6fae7e2 c0a5a18 6fae7e2 c0a5a18 577870e c0a5a18 3e0f8f8 eb4ec23 3e0f8f8 eb4ec23 3e0f8f8 577870e 16d72cb 577870e 16d72cb 577870e 16d72cb 577870e 3e0f8f8 577870e 3e0f8f8 577870e 3e0f8f8 38e43b5 3e0f8f8 577870e 3e0f8f8 eb4ec23 3e0f8f8 eb4ec23 3e0f8f8 eb4ec23 3e0f8f8 eb4ec23 6fae7e2 eb4ec23 6fae7e2 1afb9ca 6fae7e2 38e43b5 6fae7e2 3e0f8f8 38e43b5 6fae7e2 38e43b5 eb4ec23 38e43b5 6fae7e2 38e43b5 6fae7e2 38e43b5 6fae7e2 38e43b5 6fae7e2 38e43b5 6fae7e2 38e43b5 6fae7e2 38e43b5 6fae7e2 38e43b5 6fae7e2 38e43b5 279a804 a0dca54 1afb9ca a0dca54 1afb9ca a0dca54 eb4ec23 a0dca54 eb4ec23 a0dca54 eb4ec23 a0dca54 eb4ec23 a0dca54 eb4ec23 a0dca54 c0a5a18 38e43b5 577870e c0a5a18 6fae7e2 c0a5a18 6fae7e2 38e43b5 6fae7e2 279a804 eb4ec23 279a804 6fae7e2 c0a5a18 6fae7e2 a0dca54 3e0f8f8 a0dca54 577870e 6fae7e2 279a804 577870e 279a804 577870e 279a804 38e43b5 279a804 38e43b5 a0dca54 279a804 6fae7e2 577870e 279a804 a0dca54 279a804 a0dca54 279a804 a0dca54 279a804 6fae7e2 a0dca54 279a804 a0dca54 279a804 eb4ec23 279a804 eb4ec23 279a804 eb4ec23 279a804 eb4ec23 279a804 6fae7e2 279a804 577870e c0a5a18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 |
import os
import streamlit as st
import dotenv
import openai
from openai import OpenAI
import anthropic
from together import Together
import google.generativeai as genai
import time
from collections import defaultdict
from typing import List, Optional, Literal, Union, Dict
from constants import (
LLM_COUNCIL_MEMBERS,
PROVIDER_TO_AVATAR_MAP,
AGGREGATORS,
LLM_TO_UI_NAME_MAP,
)
from prompts import *
from judging_dataclasses import (
# DirectAssessmentJudgingResponse,
DirectAssessmentCriterionScore,
DirectAssessmentCriteriaScores,
)
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
dotenv.load_dotenv()
PASSWORD = os.getenv("APP_PASSWORD")
# Load API keys from environment variables
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ANTHROPIC_API_KEY = os.getenv("ANTHROPIC_API_KEY")
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
TOGETHER_API_KEY = os.getenv("TOGETHER_API_KEY")
# Initialize API clients
together_client = Together(api_key=TOGETHER_API_KEY)
genai.configure(api_key=GOOGLE_API_KEY)
# Set up API clients for OpenAI and Anthropic
openai.api_key = OPENAI_API_KEY
openai_client = OpenAI(
organization="org-kUoRSK0nOw4W2nQYMVGWOt03",
project="proj_zb6k1DdgnSEbiAEMWxSOVVu4",
)
# anthropic_client = anthropic.Client(api_key=ANTHROPIC_API_KEY)
anthropic_client = anthropic.Anthropic()
client = OpenAI()
def anthropic_streamlit_streamer(stream, llm):
"""
Process the Anthropic streaming response and yield content from the deltas.
:param stream: Streaming object from Anthropic API
:return: Yields content (text) from the streaming response.
"""
for event in stream:
if hasattr(event, "type"):
# Count input token usage.
if event.type == "message_start":
st.session_state["input_token_usage"][
llm
] += event.message.usage.input_tokens
st.session_state["output_token_usage"][
llm
] += event.message.usage.output_tokens
# Count output token usage.
if event.type == "message_delta":
st.session_state["output_token_usage"][llm] += event.usage.output_tokens
# Handle content blocks
if event.type == "content_block_delta" and hasattr(event, "delta"):
# Extract text delta from the event
text_delta = getattr(event.delta, "text", None)
if text_delta:
yield text_delta
# Handle message completion events (optional if needed)
elif event.type == "message_stop":
break # End of message, stop streaming
def get_ui_friendly_name(llm):
if "agg__" in llm:
return (
"MoA ("
+ LLM_TO_UI_NAME_MAP.get(llm.split("__")[1], llm.split("__")[1])
+ ")"
)
return LLM_TO_UI_NAME_MAP.get(llm, llm)
def google_streamlit_streamer(stream):
# TODO: Count token usage.
for chunk in stream:
yield chunk.text
def openai_streamlit_streamer(stream, llm):
# https://platform.openai.com/docs/api-reference/streaming
for event in stream:
if event.usage:
st.session_state["input_token_usage"][llm] += event.usage.prompt_tokens
st.session_state["output_token_usage"][llm] += event.usage.completion_tokens
if event.choices:
if event.choices[0].delta.content:
yield event.choices[0].delta.content
def together_streamlit_streamer(stream, llm):
# https://docs.together.ai/docs/chat-overview#streaming-responses
for chunk in stream:
if chunk.usage:
st.session_state["input_token_usage"][llm] += chunk.usage.prompt_tokens
if chunk.usage:
st.session_state["output_token_usage"][llm] += chunk.usage.completion_tokens
yield chunk.choices[0].delta.content
# Helper functions for LLM council and aggregator selection
def llm_council_selector():
selected_council = st.radio(
"Choose a council configuration", options=list(LLM_COUNCIL_MEMBERS.keys())
)
return LLM_COUNCIL_MEMBERS[selected_council]
def aggregator_selector():
return st.radio("Choose an aggregator LLM", options=AGGREGATORS)
# API calls for different providers
def get_openai_response(model_name, prompt):
return openai_client.chat.completions.create(
model=model_name,
messages=[{"role": "user", "content": prompt}],
stream=True,
stream_options={"include_usage": True},
)
# https://docs.anthropic.com/en/api/messages-streaming
def get_anthropic_response(model_name, prompt):
return anthropic_client.messages.create(
max_tokens=1024,
messages=[{"role": "user", "content": prompt}],
model=model_name,
stream=True,
)
def get_together_response(model_name, prompt):
return together_client.chat.completions.create(
model=model_name,
messages=[{"role": "user", "content": prompt}],
stream=True,
)
# https://ai.google.dev/gemini-api/docs/text-generation?lang=python
def get_google_response(model_name, prompt):
model = genai.GenerativeModel(model_name)
return model.generate_content(prompt, stream=True)
def get_llm_response_stream(model_identifier, prompt):
"""Returns a streamlit-friendly stream of response tokens from the LLM."""
provider, model_name = model_identifier.split("://")
if provider == "openai":
return openai_streamlit_streamer(
get_openai_response(model_name, prompt), model_identifier
)
elif provider == "anthropic":
return anthropic_streamlit_streamer(
get_anthropic_response(model_name, prompt), model_identifier
)
elif provider == "together":
return together_streamlit_streamer(
get_together_response(model_name, prompt), model_identifier
)
elif provider == "vertex":
return google_streamlit_streamer(get_google_response(model_name, prompt))
else:
return None
def create_dataframe_for_direct_assessment_judging_response(
response: DirectAssessmentCriteriaScores, judging_model: str
) -> pd.DataFrame:
# Initialize empty list to collect data
data = []
# Loop through models
# for judging_model in response.judging_models:
# model_name = judging_model.model
# Loop through criteria_scores
for criteria_score in response.criteria_scores:
data.append(
{
"judging_model": judging_model, # Gets passed in.
"criteria": criteria_score.criterion,
"score": criteria_score.score,
"explanation": criteria_score.explanation,
}
)
# Create DataFrame
return pd.DataFrame(data)
# Streamlit form UI
def render_criteria_form(criteria_num):
"""Render a criteria input form."""
with st.expander(f"Criteria {criteria_num + 1}"):
name = st.text_input(
f"Name for Criteria {criteria_num + 1}", key=f"criteria_name_{criteria_num}"
)
description = st.text_area(
f"Description for Criteria {criteria_num + 1}",
key=f"criteria_desc_{criteria_num}",
)
min_score = st.number_input(
f"Min Score for Criteria {criteria_num + 1}",
min_value=0,
step=1,
key=f"criteria_min_{criteria_num}",
)
max_score = st.number_input(
f"Max Score for Criteria {criteria_num + 1}",
min_value=0,
step=1,
key=f"criteria_max_{criteria_num}",
)
return Criteria(
name=name, description=description, min_score=min_score, max_score=max_score
)
def format_likert_comparison_options(options):
return "\n".join([f"{i + 1}: {option}" for i, option in enumerate(options)])
def format_criteria_list(criteria_list):
return "\n".join(
[f"{criteria.name}: {criteria.description}" for criteria in criteria_list]
)
def get_direct_assessment_prompt(
direct_assessment_prompt, user_prompt, response, criteria_list, options
):
return direct_assessment_prompt.format(
user_prompt=user_prompt,
response=response,
criteria_list=f"{format_criteria_list(DEFAULT_DIRECT_ASSESSMENT_CRITERIA_LIST)}",
options=f"{format_likert_comparison_options(SEVEN_POINT_DIRECT_ASSESSMENT_OPTIONS)}",
)
def get_default_direct_assessment_prompt(user_prompt):
return get_direct_assessment_prompt(
direct_assessment_prompt=DEFAULT_DIRECT_ASSESSMENT_PROMPT,
user_prompt=user_prompt,
response="{response}",
criteria_list=DEFAULT_DIRECT_ASSESSMENT_CRITERIA_LIST,
options=SEVEN_POINT_DIRECT_ASSESSMENT_OPTIONS,
)
def get_aggregator_prompt(aggregator_prompt, user_prompt, llms):
responses_from_other_llms = "\n\n".join(
[
f"{get_ui_friendly_name(model)} START\n{st.session_state['responses'][model]}\n\n{get_ui_friendly_name(model)} END\n\n\n"
for model in llms
]
)
return aggregator_prompt.format(
user_prompt=user_prompt,
responses_from_other_llms=responses_from_other_llms,
)
def get_default_aggregator_prompt(user_prompt, llms):
return get_aggregator_prompt(
DEFAULT_AGGREGATOR_PROMPT,
user_prompt=user_prompt,
llms=llms,
)
def get_parse_judging_response_for_direct_assessment_prompt(
judging_response: str,
criteria_list,
options,
) -> str:
# formatted_judging_responses = "\n\n\n".join(
# [
# f"----- {get_ui_friendly_name(model)} START -----\n\n\n{judging_responses[model]}\n\n\n-----{get_ui_friendly_name(model)} END-----\n\n\n"
# for model in judging_responses.keys()
# ]
# )
formatted_judging_response = (
f"----- START -----\n\n\n{judging_response}\n\n\n----- END -----\n\n\n"
)
return PARSE_JUDGING_RESPONSE_FOR_DIRECT_ASSESSMENT_PROMPT.format(
judging_response=formatted_judging_response,
criteria_list=format_criteria_list(criteria_list),
options=format_likert_comparison_options(options),
)
def get_parsed_judging_response_obj_using_llm(
prompt: str,
) -> DirectAssessmentCriteriaScores:
# if os.getenv("DEBUG_MODE") == "True":
# return DirectAssessmentJudgingResponse(
# judging_models=[
# DirectAssessmentCriteriaScores(
# model="together://meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
# criteria_scores=[
# DirectAssessmentCriterionScore(
# criterion="helpfulness", score=3, explanation="explanation1"
# ),
# DirectAssessmentCriterionScore(
# criterion="conciseness", score=4, explanation="explanation2"
# ),
# DirectAssessmentCriterionScore(
# criterion="relevance", score=5, explanation="explanation3"
# ),
# ],
# ),
# DirectAssessmentCriteriaScores(
# model="together://meta-llama/Llama-3.2-3B-Instruct-Turbo",
# criteria_scores=[
# DirectAssessmentCriterionScore(
# criterion="helpfulness", score=1, explanation="explanation1"
# ),
# DirectAssessmentCriterionScore(
# criterion="conciseness", score=2, explanation="explanation2"
# ),
# DirectAssessmentCriterionScore(
# criterion="relevance", score=3, explanation="explanation3"
# ),
# ],
# ),
# ]
# )
# else:
completion = client.beta.chat.completions.parse(
model="gpt-4o-mini",
messages=[
{
"role": "system",
"content": "Parse the judging responses into structured data.",
},
{"role": "user", "content": prompt},
],
response_format=DirectAssessmentCriteriaScores,
)
# Track token usage.
st.session_state["input_token_usage"][
"gpt-4o-mini"
] += completion.usage.prompt_tokens
st.session_state["output_token_usage"][
"gpt-4o-mini"
] += completion.usage.completion_tokens
return completion.choices[0].message.parsed
def get_llm_avatar(model_identifier):
if "agg__" in model_identifier:
return "img/council_icon.png"
else:
return PROVIDER_TO_AVATAR_MAP[model_identifier]
def plot_criteria_scores(df):
# Group by criteria and calculate mean and std over all judges.
grouped = df.groupby(["criteria"]).agg({"score": ["mean", "std"]}).reset_index()
# Flatten the MultiIndex columns
grouped.columns = ["criteria", "mean_score", "std_score"]
# Fill NaN std with zeros (in case there's only one score per group)
grouped["std_score"] = grouped["std_score"].fillna(0)
# Set up the plot
plt.figure(figsize=(8, 5))
# Create a horizontal bar plot
ax = sns.barplot(
data=grouped,
x="mean_score",
y="criteria",
hue="criteria",
errorbar=None, # Updated parameter
orient="h",
)
# Add error bars manually
# Iterate over the bars and add error bars
for i, (mean, std) in enumerate(zip(grouped["mean_score"], grouped["std_score"])):
# Get the current bar
bar = ax.patches[i]
# Calculate the center of the bar
center = bar.get_y() + bar.get_height() / 2
# Add the error bar
ax.errorbar(x=mean, y=center, xerr=std, ecolor="black", capsize=3, fmt="none")
# Set labels and title
ax.set_xlabel("")
ax.set_ylabel("")
plt.tight_layout()
# Display the plot in Streamlit
st.pyplot(plt.gcf())
def plot_overall_scores(overall_scores_df):
# Calculate mean and standard deviation
summary = (
overall_scores_df.groupby("response_model")
.agg({"score": ["mean", "std"]})
.reset_index()
)
summary.columns = ["response_model", "mean_score", "std_score"]
# Add UI-friendly names
summary["ui_friendly_name"] = summary["response_model"].apply(get_ui_friendly_name)
# Sort the summary dataframe by mean_score in descending order
summary = summary.sort_values("mean_score", ascending=False)
# Create the plot
plt.figure(figsize=(8, 5))
# Plot bars with rainbow colors
ax = sns.barplot(
x="ui_friendly_name",
y="mean_score",
hue="ui_friendly_name",
data=summary,
palette="rainbow",
capsize=0.1,
legend=False,
)
# Add error bars manually
x_coords = range(len(summary))
plt.errorbar(
x=x_coords,
y=summary["mean_score"],
yerr=summary["std_score"],
fmt="none",
c="black",
capsize=5,
zorder=10, # Ensure error bars are on top
)
# Add text annotations using the actual positions of the bars
for patch, row in zip(ax.patches, summary.itertuples()):
# Get the center of each bar (x position)
x = patch.get_x() + patch.get_width() / 2
y = patch.get_height()
# Add the text annotation
ax.text(
x,
y,
f"{row.mean_score:.2f}",
ha="center",
va="bottom",
# fontweight="bold",
color="black",
bbox=dict(facecolor="white", edgecolor="none", alpha=0.7, pad=0.5),
)
# Customize the plot
plt.xlabel("")
plt.ylabel("Overall Score")
plt.xticks(rotation=45, ha="right")
plt.tight_layout()
# Display the plot in Streamlit
st.pyplot(plt.gcf())
def plot_per_judge_overall_scores(df):
# Find the overall score by finding the overall score for each judge, and then averaging
# over all judges.
grouped = df.groupby(["judging_model"]).agg({"score": ["mean"]}).reset_index()
grouped.columns = ["judging_model", "overall_score"]
# Create the horizontal bar plot
plt.figure(figsize=(10, 6))
ax = sns.barplot(
data=grouped,
x="judging_model",
y="overall_score",
hue="judging_model",
orient="v",
palette="rainbow",
)
# Customize the plot
plt.title("Overall Score from each LLM Judge")
plt.xlabel("Overall Score")
plt.ylabel("LLM Judge")
# Adjust layout and display the plot
plt.tight_layout()
st.pyplot(plt)
def get_selected_models_to_streamlit_column_map(st_columns, selected_models):
selected_models_to_streamlit_column_map = {
model: st_columns[i % len(st_columns)]
for i, model in enumerate(selected_models)
}
return selected_models_to_streamlit_column_map
def get_aggregator_key(llm_aggregator):
return "agg__" + llm_aggregator
def st_render_responses(user_prompt):
"""Renders the responses from the LLMs.
Uses cached responses from the session state, if available.
Otherwise, streams the responses anew.
Assumes that the session state has already been set up with selected models and selected aggregator.
"""
st.markdown("#### Responses")
response_columns = st.columns(3)
selected_models_to_streamlit_column_map = (
get_selected_models_to_streamlit_column_map(
response_columns, st.session_state.selected_models
)
)
for response_model in st.session_state.selected_models:
st_column = selected_models_to_streamlit_column_map.get(
response_model, response_columns[0]
)
with st_column.chat_message(
response_model,
avatar=get_llm_avatar(response_model),
):
st.write(get_ui_friendly_name(response_model))
if response_model in st.session_state.responses:
# Use the cached response from session state.
st.write(st.session_state.responses[response_model])
else:
# Stream the response from the LLM.
message_placeholder = st.empty()
stream = get_llm_response_stream(response_model, user_prompt)
st.session_state.responses[response_model] = (
message_placeholder.write_stream(stream)
)
# Render the aggregator response.
aggregator_prompt = get_default_aggregator_prompt(
user_prompt=user_prompt, llms=st.session_state.selected_models
)
# Streaming response from the aggregator.
with st.chat_message(
get_aggregator_key(st.session_state.selected_aggregator),
avatar="img/council_icon.png",
):
st.write(
f"{get_ui_friendly_name(get_aggregator_key(st.session_state.selected_aggregator))}"
)
if (
get_aggregator_key(st.session_state.selected_aggregator)
in st.session_state.responses
):
st.write(
st.session_state.responses[
get_aggregator_key(st.session_state.selected_aggregator)
]
)
else:
message_placeholder = st.empty()
aggregator_stream = get_llm_response_stream(
st.session_state.selected_aggregator, aggregator_prompt
)
if aggregator_stream:
st.session_state.responses[
get_aggregator_key(st.session_state.selected_aggregator)
] = message_placeholder.write_stream(aggregator_stream)
st.session_state.responses_collected = True
def st_direct_assessment_results(user_prompt, direct_assessment_prompt, criteria_list):
"""Renders the direct assessment results block.
Uses session state to render results from LLMs. If the session state isn't set, then fetches the
responses from the LLMs services from scratch (and sets the session state).
Assumes that the session state has already been set up with responses.
"""
responses_for_judging = st.session_state.responses
# Get judging responses.
response_judging_columns = st.columns(3)
responses_for_judging_to_streamlit_column_map = (
get_selected_models_to_streamlit_column_map(
response_judging_columns, responses_for_judging.keys()
)
)
for response_model, response in responses_for_judging.items():
st_column = responses_for_judging_to_streamlit_column_map[response_model]
with st_column:
st.write(f"Judging for {get_ui_friendly_name(response_model)}")
judging_prompt = get_direct_assessment_prompt(
direct_assessment_prompt=direct_assessment_prompt,
user_prompt=user_prompt,
response=response,
criteria_list=criteria_list,
options=SEVEN_POINT_DIRECT_ASSESSMENT_OPTIONS,
)
with st.expander("Final Judging Prompt"):
st.code(judging_prompt)
for judging_model in st.session_state.selected_models:
with st.expander(get_ui_friendly_name(judging_model), expanded=True):
with st.chat_message(
judging_model,
avatar=PROVIDER_TO_AVATAR_MAP[judging_model],
):
if (
judging_model
in st.session_state.direct_assessment_judging_responses[
response_model
]
):
# Use the session state cached response.
st.write(
st.session_state.direct_assessment_judging_responses[
response_model
][judging_model]
)
else:
message_placeholder = st.empty()
# Get the judging response from the LLM.
judging_stream = get_llm_response_stream(
judging_model, judging_prompt
)
st.session_state.direct_assessment_judging_responses[
response_model
][judging_model] = message_placeholder.write_stream(
judging_stream
)
# Parse the judging response. If parsing results are already cached, then
# skip.
# Use Structured Output to parse the judging response.
parse_judging_response_prompt = get_parse_judging_response_for_direct_assessment_prompt(
judging_response=st.session_state.direct_assessment_judging_responses[
response_model
][
judging_model
],
criteria_list=criteria_list,
options=SEVEN_POINT_DIRECT_ASSESSMENT_OPTIONS,
)
st.write("Parse judging response prompt:")
st.write(parse_judging_response_prompt)
if (
response_model
not in st.session_state.direct_assessment_judging_by_response_and_judging_model_df
or judging_model
not in st.session_state.direct_assessment_judging_by_response_and_judging_model_df[
response_model
]
):
parsed_judging_response_obj = (
get_parsed_judging_response_obj_using_llm(
parse_judging_response_prompt
)
)
st.session_state.direct_assessment_judging_by_response_and_judging_model_df[
response_model
][
judging_model
] = create_dataframe_for_direct_assessment_judging_response(
parsed_judging_response_obj, judging_model
)
# with st.expander("Structured output parsing response"):
st.write("Structured output parsing response:")
st.write(
st.session_state.direct_assessment_judging_by_response_and_judging_model_df[
response_model
][
judging_model
]
)
# Combined the dataframes for each judging model into a single dataframe for each
# response model.
if response_model not in st.session_state.direct_assessment_judging_df:
# Combine the dataframes for each judging model into a single dataframe.
combined_judging_df = pd.DataFrame()
for judging_model in st.session_state.selected_models:
combined_judging_df = pd.concat(
[
combined_judging_df,
st.session_state.direct_assessment_judging_by_response_and_judging_model_df[
response_model
][
judging_model
],
]
)
st.session_state.direct_assessment_judging_df[response_model] = (
combined_judging_df
)
with st.expander("Judging results from all judges"):
st.write(st.session_state.direct_assessment_judging_df[response_model])
# Uses the session state to plot the criteria scores and graphs for a given response
# model.
plot_criteria_scores(
st.session_state.direct_assessment_judging_df[response_model]
)
plot_per_judge_overall_scores(
st.session_state.direct_assessment_judging_df[response_model]
)
grouped = (
st.session_state.direct_assessment_judging_df[response_model]
.groupby(["judging_model"])
.agg({"score": ["mean"]})
.reset_index()
)
grouped.columns = ["judging_model", "overall_score"]
# Save the overall scores to the session state if it's not already there.
for record in grouped.to_dict(orient="records"):
st.session_state.direct_assessment_overall_scores[
get_ui_friendly_name(response_model)
][get_ui_friendly_name(record["judging_model"])] = record[
"overall_score"
]
overall_score = grouped["overall_score"].mean()
controversy = grouped["overall_score"].std()
st.write(f"Overall Score: {overall_score:.2f}")
st.write(f"Controversy: {controversy:.2f}")
# Mark judging as complete.
st.session_state.judging_status = "complete"
# Main Streamlit App
def main():
st.set_page_config(
page_title="Language Model Council Sandbox", page_icon="🏛️", layout="wide"
)
# Custom CSS for the chat display
center_css = """
<style>
h1, h2, h3, h6 { text-align: center; }
.chat-container {
display: flex;
align-items: flex-start;
margin-bottom: 10px;
}
.avatar {
width: 50px;
margin-right: 10px;
}
.message {
background-color: #f1f1f1;
padding: 10px;
border-radius: 10px;
width: 100%;
}
</style>
"""
st.markdown(center_css, unsafe_allow_html=True)
# App title and description
st.title("Language Model Council Sandbox")
st.markdown("###### Invoke a council of LLMs to judge each other's responses.")
st.markdown("###### [Paper](https://arxiv.org/abs/2406.08598)")
# Authentication system
if "authenticated" not in st.session_state:
st.session_state.authenticated = False
cols = st.columns([2, 1, 2])
if not st.session_state.authenticated:
with cols[1]:
with st.form("login_form"):
password = st.text_input("Password", type="password")
submit_button = st.form_submit_button("Login", use_container_width=True)
if submit_button:
if password == PASSWORD:
st.session_state.authenticated = True
st.success("Logged in successfully!")
st.rerun()
else:
st.error("Invalid credentials")
if st.session_state.authenticated:
if "responses_collected" not in st.session_state:
st.session_state["responses_collected"] = False
# Initialize session state for collecting responses.
if "responses" not in st.session_state:
st.session_state.responses = defaultdict(str)
# Initialize session state for token usage.
if "input_token_usage" not in st.session_state:
st.session_state["input_token_usage"] = defaultdict(int)
if "output_token_usage" not in st.session_state:
st.session_state["output_token_usage"] = defaultdict(int)
if "selected_models" not in st.session_state:
st.session_state["selected_models"] = []
if "selected_aggregator" not in st.session_state:
st.session_state["selected_aggregator"] = None
# Initialize session state for direct assessment judging.
if "direct_assessment_overall_score" not in st.session_state:
st.session_state.direct_assessment_overall_score = {}
if "direct_assessment_judging_df" not in st.session_state:
st.session_state.direct_assessment_judging_df = {}
if (
"direct_assessment_judging_by_response_and_judging_model_df"
not in st.session_state
):
st.session_state.direct_assessment_judging_by_response_and_judging_model_df = defaultdict(
dict
)
if "direct_assessment_judging_responses" not in st.session_state:
st.session_state.direct_assessment_judging_responses = defaultdict(dict)
if "direct_assessment_overall_scores" not in st.session_state:
st.session_state.direct_assessment_overall_scores = defaultdict(dict)
if "judging_status" not in st.session_state:
st.session_state.judging_status = "incomplete"
if "direct_assessment_config" not in st.session_state:
st.session_state.direct_assessment_config = {}
if "pairwise_comparison_config" not in st.session_state:
st.session_state.pairwise_comparison_config = {}
if "assessment_type" not in st.session_state:
st.session_state.assessment_type = None
with st.form(key="prompt_form"):
st.markdown("#### LLM Council Member Selection")
# Council and aggregator selection
selected_models = llm_council_selector()
selected_aggregator = aggregator_selector()
# Prompt input and submission form
st.markdown("#### Enter your prompt")
_, center_column, _ = st.columns([3, 5, 3])
with center_column:
user_prompt = st.text_area(
"Enter your prompt",
value="Say 'Hello World'",
key="user_prompt",
label_visibility="hidden",
)
submit_button = st.form_submit_button(
"Submit", use_container_width=True
)
if submit_button:
# Udpate state.
st.session_state.selected_models = selected_models
st.session_state.selected_aggregator = selected_aggregator
# Render the chats.
st_render_responses(user_prompt)
# Render chats generally even they are available, if the submit button isn't clicked.
elif st.session_state.responses:
st_render_responses(user_prompt)
# Judging.
if st.session_state.responses_collected:
with st.form(key="judging_form"):
st.markdown("#### Judging Configuration")
# Choose the type of assessment
assessment_type = st.radio(
"Select the type of assessment",
options=["Direct Assessment", "Pairwise Comparison"],
)
_, center_column, _ = st.columns([3, 5, 3])
# Depending on the assessment type, render different forms
if assessment_type == "Direct Assessment":
# Direct assessment prompt.
with center_column.expander("Direct Assessment Prompt"):
direct_assessment_prompt = st.text_area(
"Prompt for the Direct Assessment",
value=get_default_direct_assessment_prompt(
user_prompt=user_prompt
),
height=500,
key="direct_assessment_prompt",
)
# TODO: Add option to edit criteria list with a basic text field.
criteria_list = DEFAULT_DIRECT_ASSESSMENT_CRITERIA_LIST
with center_column:
judging_submit_button = st.form_submit_button(
"Submit Judging", use_container_width=True
)
if judging_submit_button:
# Update session state.
st.session_state.assessment_type = assessment_type
if st.session_state.assessment_type == "Direct Assessment":
st.session_state.direct_assessment_config = {
"prompt": direct_assessment_prompt,
"criteria_list": criteria_list,
}
st_direct_assessment_results(
user_prompt=st.session_state.user_prompt,
direct_assessment_prompt=direct_assessment_prompt,
criteria_list=criteria_list,
)
# If judging is complete, but the submit button is cleared, still render the results.
elif st.session_state.judging_status == "complete":
if st.session_state.assessment_type == "Direct Assessment":
st_direct_assessment_results(
user_prompt=st.session_state.user_prompt,
direct_assessment_prompt=direct_assessment_prompt,
criteria_list=criteria_list,
)
# Judging is complete.
# Render stuff that would be rendered that's not stream-specific.
# The session state now contains the overall scores for each response from each judge.
if st.session_state.judging_status == "complete":
st.write("#### Results")
overall_scores_df_raw = pd.DataFrame(
st.session_state.direct_assessment_overall_scores
).reset_index()
overall_scores_df = pd.melt(
overall_scores_df_raw,
id_vars=["index"],
var_name="response_model",
value_name="score",
).rename(columns={"index": "judging_model"})
# Print the overall winner.
overall_winner = overall_scores_df.loc[
overall_scores_df["score"].idxmax()
]
st.write(
f"**Overall Winner:** {get_ui_friendly_name(overall_winner['response_model'])}"
)
# Find how much the standard deviation overlaps with other models
# TODO: Calculate separability.
st.write(f"**Confidence:** {overall_winner['score']:.2f}")
left_column, right_column = st.columns([1, 1])
with left_column:
plot_overall_scores(overall_scores_df)
with right_column:
# All overall scores.
overall_scores_df = overall_scores_df[
["response_model", "judging_model", "score"]
]
overall_scores_df["response_model"] = overall_scores_df[
"response_model"
].apply(get_ui_friendly_name)
# overall_scores_df["judging_model"] = overall_scores_df[
# "judging_model"
# ].apply(get_ui_friendly_name)
with st.expander("Overall scores from all judges"):
st.write(st.session_state.direct_assessment_overall_scores)
st.dataframe(overall_scores_df_raw)
st.dataframe(overall_scores_df)
# All criteria scores.
with right_column:
all_scores_df = pd.DataFrame()
for (
response_model,
score_df,
) in st.session_state.direct_assessment_judging_df.items():
score_df["response_model"] = response_model
all_scores_df = pd.concat([all_scores_df, score_df])
all_scores_df = all_scores_df.reset_index()
all_scores_df = all_scores_df.drop(columns="index")
# Reorder the columns
all_scores_df = all_scores_df[
[
"response_model",
"judging_model",
"criteria",
"score",
"explanation",
]
]
# all_scores_df["response_model"] = all_scores_df[
# "response_model"
# ].apply(get_ui_friendly_name)
# all_scores_df["judging_model"] = all_scores_df[
# "judging_model"
# ].apply(get_ui_friendly_name)
with st.expander(
"Criteria-specific scores and explanations from all judges"
):
st.dataframe(all_scores_df)
# Token usage.
if st.session_state.responses:
st.divider()
with st.expander("Token Usage"):
st.write("Input tokens used.")
st.write(st.session_state.input_token_usage)
st.write(
f"Input Tokens Total: {sum(st.session_state.input_token_usage.values())}"
)
st.write("Output tokens used.")
st.write(st.session_state.output_token_usage)
st.write(
f"Output Tokens Total: {sum(st.session_state.output_token_usage.values())}"
)
else:
with cols[1]:
st.warning("Please log in to access this app.")
if __name__ == "__main__":
main()
|