File size: 3,981 Bytes
8c49cb6
 
 
99a4ea0
8c49cb6
 
99a4ea0
df66f6e
314f91a
8c49cb6
b0dac31
 
 
 
 
 
 
 
 
 
 
 
 
8c49cb6
245d717
99a4ea0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0691b9
99a4ea0
 
 
257b821
dc8017a
 
 
b0dac31
 
 
 
835517f
b0dac31
f5348ec
0cb52bf
 
8f35a3f
f5348ec
8c49cb6
a684f6e
245d717
c1b8a96
8c49cb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eed1ccd
6e6645b
8c49cb6
 
 
6e6645b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import json
import os

import datasets
import pandas as pd

from src.about import Tasks
from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, EvalQueueColumn

# The values of these columns are in the range of 0-100
# We normalize them to 0-1
COLUMNS_TO_NORMALIZE = [
    "ALT E to J BLEU",
    "ALT J to E BLEU",
    "WikiCorpus E to J BLEU",
    "WikiCorpus J to E BLEU",
    "XL-Sum JA BLEU",
    "XL-Sum ROUGE1",
    "XL-Sum ROUGE2",
    "XL-Sum ROUGE-Lsum",
]


def get_leaderboard_df(contents_repo: str, cols: list[str], benchmark_cols: list[str]) -> pd.DataFrame:
    df = datasets.load_dataset(contents_repo, split="train").to_pandas()
    df["Model"] = df["model"].map(make_clickable_model)
    df["T"] = df["model_type"].map(lambda x: x.split(":")[0].strip())
    df = df.rename(columns={task.value.metric: task.value.col_name for task in Tasks})
    df = df.rename(
        columns={
            "architecture": "Architecture",
            "weight_type": "Weight type",
            "precision": "Precision",
            "license": "Hub License",
            "params": "#Params (B)",
            "likes": "Hub ❤️",
            "revision": "Revision",
            "num_few_shot": "Few-shot",
            "add_special_tokens": "Add Special Tokens",
            "llm_jp_eval_version": "llm-jp-eval version",
            "vllm_version": "vllm version",
            "model_type": "Type",
            "model": "model_name_for_query",
        }
    )

    # Add a row ID column
    df[AutoEvalColumn.row_id.name] = range(len(df))

    # Normalize the columns
    available_columns_to_normalize = [col for col in COLUMNS_TO_NORMALIZE if col in df.columns]
    df[available_columns_to_normalize] = df[available_columns_to_normalize] / 100

    df = df.sort_values(by=[AutoEvalColumn.AVG.name], ascending=False)
    df = df[cols].round(decimals=4)

    # filter out if any of the benchmarks have not been produced
    df = df[has_no_nan_values(df, benchmark_cols)]

    return df


def get_evaluation_queue_df(save_path: str, cols: list[str]) -> list[pd.DataFrame]:
    """Creates the different dataframes for the evaluation queues requestes"""
    entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
    all_evals = []

    for entry in entries:
        if ".json" in entry:
            file_path = os.path.join(save_path, entry)
            with open(file_path) as fp:
                data = json.load(fp)

            data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
            data[EvalQueueColumn.revision.name] = data.get("revision", "main")

            all_evals.append(data)
        elif ".md" not in entry:
            # this is a folder
            sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
            for sub_entry in sub_entries:
                file_path = os.path.join(save_path, entry, sub_entry)
                with open(file_path) as fp:
                    data = json.load(fp)

                data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
                data[EvalQueueColumn.revision.name] = data.get("revision", "main")
                all_evals.append(data)

    pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
    running_list = [e for e in all_evals if e["status"] == "RUNNING"]
    finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
    failed_list = [e for e in all_evals if e["status"] == "FAILED"]
    df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
    df_running = pd.DataFrame.from_records(running_list, columns=cols)
    df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
    df_failed = pd.DataFrame.from_records(failed_list, columns=cols)
    return df_finished[cols], df_running[cols], df_pending[cols], df_failed[cols]