hysts's picture
hysts HF staff
Use preprocessed table dataset (WIP)
99a4ea0
raw
history blame
4.23 kB
import json
import os
from decimal import Decimal
import datasets
import pandas as pd
from src.about import Tasks
from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, EvalQueueColumn
def get_leaderboard_df(contents_repo: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
"""Creates a dataframe from all the individual experiment results"""
df = datasets.load_dataset(contents_repo, split="train").to_pandas()
df["Model"] = df["model"].map(make_clickable_model)
df["T"] = df["model_type"].map(lambda x: x.split(":")[0].strip())
df["Type"] = df["model_type"].map(lambda x: x.split(":")[1].strip())
df["Backend Library"] = "vllm"
df = df.rename(columns={task.value.metric: task.value.col_name for task in Tasks})
df = df.rename(
columns={
"architecture": "Architecture",
"weight_type": "Weight type",
"precision": "Precision",
"license": "Hub License",
"params": "#Params (B)",
"likes": "Hub ❤️",
"revision": "Revision",
"num_few_shot": "Few-shot",
"add_special_tokens": "Add Special Tokens",
"llm_jp_eval_version": "llm-jp-eval version",
"vllm_version": "vllm version",
"model": "model_name_for_query",
}
)
df[[task.value.col_name for task in Tasks]] = df[[task.value.col_name for task in Tasks]].map(lambda x: Decimal(x))
# Add a row ID column
df[AutoEvalColumn.row_id.name] = range(len(df))
score_cols = [
"ALT E to J BLEU",
"ALT J to E BLEU",
"WikiCorpus E to J BLEU",
"WikiCorpus J to E BLEU",
"XL-Sum JA BLEU",
"XL-Sum ROUGE1",
"XL-Sum ROUGE2",
"XL-Sum ROUGE-Lsum",
]
existing_score_cols = [col for col in score_cols if col in df.columns]
# スコア列を100で割り、.4f形式でフォーマット
df[existing_score_cols] = (df[existing_score_cols] / 100).map(lambda x: f"{x:.4f}")
df = df.sort_values(by=[AutoEvalColumn.AVG.name], ascending=False)
df = df[cols].round(decimals=2)
# filter out if any of the benchmarks have not been produced
df = df[has_no_nan_values(df, benchmark_cols)]
return df
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
"""Creates the different dataframes for the evaluation queues requestes"""
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
all_evals = []
for entry in entries:
if ".json" in entry:
file_path = os.path.join(save_path, entry)
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
elif ".md" not in entry:
# this is a folder
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
for sub_entry in sub_entries:
file_path = os.path.join(save_path, entry, sub_entry)
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
failed_list = [e for e in all_evals if e["status"] == "FAILED"]
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
df_running = pd.DataFrame.from_records(running_list, columns=cols)
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
df_failed = pd.DataFrame.from_records(failed_list, columns=cols)
return df_finished[cols], df_running[cols], df_pending[cols], df_failed[cols]