Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Clean up
Browse files
app.py
CHANGED
@@ -65,75 +65,86 @@ except Exception:
|
|
65 |
|
66 |
|
67 |
# Searching and filtering
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
71 |
type_query: list,
|
72 |
-
precision_query: str,
|
73 |
size_query: list,
|
|
|
74 |
add_special_tokens_query: list,
|
75 |
num_few_shots_query: list,
|
76 |
show_deleted: bool,
|
77 |
show_merges: bool,
|
78 |
show_flagged: bool,
|
79 |
-
|
80 |
-
)
|
81 |
-
print(
|
82 |
-
f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}"
|
83 |
-
)
|
84 |
-
print(f"hidden_df shape before filtering: {hidden_df.shape}")
|
85 |
|
86 |
-
filtered_df =
|
87 |
-
hidden_df,
|
88 |
-
type_query,
|
89 |
-
size_query,
|
90 |
-
precision_query,
|
91 |
-
add_special_tokens_query,
|
92 |
-
num_few_shots_query,
|
93 |
-
show_deleted,
|
94 |
-
show_merges,
|
95 |
-
show_flagged,
|
96 |
-
)
|
97 |
-
print(f"filtered_df shape after filter_models: {filtered_df.shape}")
|
98 |
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
)
|
105 |
-
print("Filtered dataframe head:")
|
106 |
-
print(filtered_df.head())
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
113 |
|
|
|
|
|
|
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
|
123 |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
124 |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
125 |
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
|
139 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
@@ -169,80 +180,59 @@ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
169 |
return filtered_df
|
170 |
|
171 |
|
172 |
-
def
|
173 |
-
|
174 |
-
|
175 |
-
if query != "":
|
176 |
-
queries = [q.strip() for q in query.split(";")]
|
177 |
-
for _q in queries:
|
178 |
-
_q = _q.strip()
|
179 |
-
if _q != "":
|
180 |
-
temp_filtered_df = search_table(filtered_df, _q)
|
181 |
-
if len(temp_filtered_df) > 0:
|
182 |
-
final_df.append(temp_filtered_df)
|
183 |
-
if len(final_df) > 0:
|
184 |
-
filtered_df = pd.concat(final_df)
|
185 |
-
filtered_df = filtered_df.drop_duplicates(
|
186 |
-
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
|
187 |
-
)
|
188 |
-
|
189 |
-
return filtered_df
|
190 |
-
|
191 |
-
|
192 |
-
def filter_models(
|
193 |
-
df: pd.DataFrame,
|
194 |
type_query: list,
|
|
|
195 |
size_query: list,
|
196 |
-
precision_query: list,
|
197 |
add_special_tokens_query: list,
|
198 |
num_few_shots_query: list,
|
199 |
show_deleted: bool,
|
200 |
show_merges: bool,
|
201 |
show_flagged: bool,
|
202 |
-
|
203 |
-
|
204 |
-
print(
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
# Model Type フィルタリング
|
209 |
-
type_column = "T" if "T" in df.columns else "Type_"
|
210 |
-
type_emoji = [t.split()[0] for t in type_query]
|
211 |
-
filtered_df = df[df[type_column].isin(type_emoji)]
|
212 |
-
print(f"After type filter: {filtered_df.shape}")
|
213 |
|
214 |
-
|
215 |
-
|
216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
|
218 |
-
|
219 |
-
|
220 |
-
size_mask = filtered_df["#Params (B)"].isna() | (filtered_df["#Params (B)"] == 0)
|
221 |
-
else:
|
222 |
-
size_mask = filtered_df["#Params (B)"].apply(
|
223 |
-
lambda x: any(x in NUMERIC_INTERVALS[s] for s in size_query if s != "Unknown")
|
224 |
-
)
|
225 |
-
filtered_df = filtered_df[size_mask]
|
226 |
-
print(f"After size filter: {filtered_df.shape}")
|
227 |
|
228 |
-
|
229 |
-
|
230 |
-
|
|
|
|
|
231 |
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
|
238 |
-
# Show deleted models フィルタリング
|
239 |
-
if not show_deleted:
|
240 |
-
filtered_df = filtered_df[filtered_df["Available on the hub"]]
|
241 |
-
print(f"After show_deleted filter: {filtered_df.shape}")
|
242 |
|
243 |
-
|
244 |
-
|
245 |
-
return
|
|
|
|
|
|
|
246 |
|
247 |
|
248 |
# Prepare the dataframes
|
|
|
65 |
|
66 |
|
67 |
# Searching and filtering
|
68 |
+
|
69 |
+
|
70 |
+
def filter_models(
|
71 |
+
df: pd.DataFrame,
|
72 |
type_query: list,
|
|
|
73 |
size_query: list,
|
74 |
+
precision_query: list,
|
75 |
add_special_tokens_query: list,
|
76 |
num_few_shots_query: list,
|
77 |
show_deleted: bool,
|
78 |
show_merges: bool,
|
79 |
show_flagged: bool,
|
80 |
+
) -> pd.DataFrame:
|
81 |
+
print(f"Initial df shape: {df.shape}")
|
82 |
+
print(f"Initial df content:\n{df}")
|
|
|
|
|
|
|
83 |
|
84 |
+
filtered_df = df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
# Model Type フィルタリング
|
87 |
+
type_column = "T" if "T" in df.columns else "Type_"
|
88 |
+
type_emoji = [t.split()[0] for t in type_query]
|
89 |
+
filtered_df = df[df[type_column].isin(type_emoji)]
|
90 |
+
print(f"After type filter: {filtered_df.shape}")
|
91 |
|
92 |
+
# Precision フィルタリング
|
93 |
+
filtered_df = filtered_df[filtered_df["Precision"].isin(precision_query + ["Unknown", "?"])]
|
94 |
+
print(f"After precision filter: {filtered_df.shape}")
|
|
|
|
|
95 |
|
96 |
+
# Model Size フィルタリング
|
97 |
+
if "Unknown" in size_query:
|
98 |
+
size_mask = filtered_df["#Params (B)"].isna() | (filtered_df["#Params (B)"] == 0)
|
99 |
+
else:
|
100 |
+
size_mask = filtered_df["#Params (B)"].apply(
|
101 |
+
lambda x: any(x in NUMERIC_INTERVALS[s] for s in size_query if s != "Unknown")
|
102 |
+
)
|
103 |
+
filtered_df = filtered_df[size_mask]
|
104 |
+
print(f"After size filter: {filtered_df.shape}")
|
105 |
|
106 |
+
# Add Special Tokens フィルタリング
|
107 |
+
filtered_df = filtered_df[filtered_df["Add Special Tokens"].isin(add_special_tokens_query + ["Unknown", "?"])]
|
108 |
+
print(f"After add_special_tokens filter: {filtered_df.shape}")
|
109 |
|
110 |
+
# Num Few Shots フィルタリング
|
111 |
+
filtered_df = filtered_df[
|
112 |
+
filtered_df["Few-shot"].astype(str).isin([str(x) for x in num_few_shots_query] + ["Unknown", "?"])
|
113 |
+
]
|
114 |
+
print(f"After num_few_shots filter: {filtered_df.shape}")
|
115 |
+
|
116 |
+
# Show deleted models フィルタリング
|
117 |
+
if not show_deleted:
|
118 |
+
filtered_df = filtered_df[filtered_df["Available on the hub"]]
|
119 |
+
print(f"After show_deleted filter: {filtered_df.shape}")
|
120 |
+
|
121 |
+
print("Filtered dataframe head:")
|
122 |
+
print(filtered_df.head())
|
123 |
+
return filtered_df
|
124 |
|
125 |
|
126 |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
127 |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
128 |
|
129 |
|
130 |
+
def filter_queries(query: str, filtered_df: pd.DataFrame):
|
131 |
+
"""Added by Abishek"""
|
132 |
+
final_df = []
|
133 |
+
if query != "":
|
134 |
+
queries = [q.strip() for q in query.split(";")]
|
135 |
+
for _q in queries:
|
136 |
+
_q = _q.strip()
|
137 |
+
if _q != "":
|
138 |
+
temp_filtered_df = search_table(filtered_df, _q)
|
139 |
+
if len(temp_filtered_df) > 0:
|
140 |
+
final_df.append(temp_filtered_df)
|
141 |
+
if len(final_df) > 0:
|
142 |
+
filtered_df = pd.concat(final_df)
|
143 |
+
filtered_df = filtered_df.drop_duplicates(
|
144 |
+
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
|
145 |
+
)
|
146 |
+
|
147 |
+
return filtered_df
|
148 |
|
149 |
|
150 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
|
180 |
return filtered_df
|
181 |
|
182 |
|
183 |
+
def update_table(
|
184 |
+
hidden_df: pd.DataFrame,
|
185 |
+
columns: list,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
type_query: list,
|
187 |
+
precision_query: str,
|
188 |
size_query: list,
|
|
|
189 |
add_special_tokens_query: list,
|
190 |
num_few_shots_query: list,
|
191 |
show_deleted: bool,
|
192 |
show_merges: bool,
|
193 |
show_flagged: bool,
|
194 |
+
query: str,
|
195 |
+
):
|
196 |
+
print(
|
197 |
+
f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}"
|
198 |
+
)
|
199 |
+
print(f"hidden_df shape before filtering: {hidden_df.shape}")
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
+
filtered_df = filter_models(
|
202 |
+
hidden_df,
|
203 |
+
type_query,
|
204 |
+
size_query,
|
205 |
+
precision_query,
|
206 |
+
add_special_tokens_query,
|
207 |
+
num_few_shots_query,
|
208 |
+
show_deleted,
|
209 |
+
show_merges,
|
210 |
+
show_flagged,
|
211 |
+
)
|
212 |
+
print(f"filtered_df shape after filter_models: {filtered_df.shape}")
|
213 |
|
214 |
+
filtered_df = filter_queries(query, filtered_df)
|
215 |
+
print(f"filtered_df shape after filter_queries: {filtered_df.shape}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
217 |
+
print(
|
218 |
+
f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}"
|
219 |
+
)
|
220 |
+
print("Filtered dataframe head:")
|
221 |
+
print(filtered_df.head())
|
222 |
|
223 |
+
df = select_columns(filtered_df, columns)
|
224 |
+
print(f"Final df shape: {df.shape}")
|
225 |
+
print("Final dataframe head:")
|
226 |
+
print(df.head())
|
227 |
+
return df
|
228 |
|
|
|
|
|
|
|
|
|
229 |
|
230 |
+
def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists
|
231 |
+
query = request.query_params.get("query") or ""
|
232 |
+
return (
|
233 |
+
query,
|
234 |
+
query,
|
235 |
+
) # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed
|
236 |
|
237 |
|
238 |
# Prepare the dataframes
|