CSAle
commited on
Commit
·
f25b2b3
0
Parent(s):
Adding Initial App
Browse files- .chainlit/.langchain.db +0 -0
- .chainlit/config.toml +29 -0
- .gitignore +4 -0
- Dockerfile +7 -0
- app.py +128 -0
- chainlit.md +11 -0
- requirements.txt +6 -0
.chainlit/.langchain.db
ADDED
Binary file (12.3 kB). View file
|
|
.chainlit/config.toml
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
# Name of the app and chatbot.
|
3 |
+
name = "Arxiv Chatbot"
|
4 |
+
# Description of the app and chatbot. This is used for HTML tags.
|
5 |
+
# description = ""
|
6 |
+
|
7 |
+
# If true (default), the app will be available to anonymous users (once deployed).
|
8 |
+
# If false, users will need to authenticate and be part of the project to use the app.
|
9 |
+
public = true
|
10 |
+
|
11 |
+
# The project ID (found on https://cloud.chainlit.io).
|
12 |
+
# If provided, all the message data will be stored in the cloud.
|
13 |
+
# The project ID is required when public is set to false.
|
14 |
+
#id = ""
|
15 |
+
|
16 |
+
# Whether to enable telemetry (default: true). No personal data is collected.
|
17 |
+
enable_telemetry = false
|
18 |
+
|
19 |
+
# List of environment variables to be provided by each user to use the app.
|
20 |
+
user_env = ["OPENAI_API_KEY"]
|
21 |
+
|
22 |
+
# Hide the chain of thought details from the user in the UI.
|
23 |
+
hide_cot = false
|
24 |
+
|
25 |
+
# Link to your github repo. This will add a github button in the UI's header.
|
26 |
+
# github = ""
|
27 |
+
|
28 |
+
# Limit the number of requests per user.
|
29 |
+
#request_limit = "10 per day"
|
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.env
|
2 |
+
.vscode
|
3 |
+
.chroma
|
4 |
+
__pycache__
|
Dockerfile
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM 3.8.17-alpine3.18
|
2 |
+
# copy the requirements.txt file first to avoid cache invalidations
|
3 |
+
COPY requirements.txt /app/requirements.txt
|
4 |
+
WORKDIR /app
|
5 |
+
RUN pip install -r requirements.txt
|
6 |
+
COPY . /app
|
7 |
+
CMD ["chainlit", "app.py"]
|
app.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
2 |
+
from langchain.document_loaders import PyMuPDFLoader
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain.vectorstores import Chroma
|
5 |
+
from langchain.chains import RetrievalQAWithSourcesChain
|
6 |
+
from langchain.chat_models import ChatOpenAI
|
7 |
+
from langchain.prompts.chat import (
|
8 |
+
ChatPromptTemplate,
|
9 |
+
SystemMessagePromptTemplate,
|
10 |
+
HumanMessagePromptTemplate,
|
11 |
+
)
|
12 |
+
import os
|
13 |
+
import arxiv
|
14 |
+
import chainlit as cl
|
15 |
+
from chainlit import user_session
|
16 |
+
|
17 |
+
user_env = user_session.get("env")
|
18 |
+
|
19 |
+
system_template = """Use the following pieces of context to answer the users question.
|
20 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
21 |
+
ALWAYS return a "SOURCES" part in your answer.
|
22 |
+
The "SOURCES" part should be a reference to the source of the document from which you got your answer.
|
23 |
+
|
24 |
+
Example of your response should be:
|
25 |
+
|
26 |
+
```
|
27 |
+
The answer is foo
|
28 |
+
|
29 |
+
SOURCES:
|
30 |
+
Title: xyz
|
31 |
+
Page Number: 1
|
32 |
+
URL: https://arxiv.org/abs/X.Y.Z
|
33 |
+
```
|
34 |
+
|
35 |
+
Begin!
|
36 |
+
----------------
|
37 |
+
{summaries}"""
|
38 |
+
messages = [
|
39 |
+
SystemMessagePromptTemplate.from_template(system_template),
|
40 |
+
HumanMessagePromptTemplate.from_template("{question}"),
|
41 |
+
]
|
42 |
+
prompt = ChatPromptTemplate.from_messages(messages)
|
43 |
+
chain_type_kwargs = {"prompt": prompt}
|
44 |
+
|
45 |
+
|
46 |
+
@cl.langchain_factory
|
47 |
+
def init():
|
48 |
+
arxiv_query = None
|
49 |
+
|
50 |
+
# Wait for the user to ask an Arxiv question
|
51 |
+
while arxiv_query == None:
|
52 |
+
arxiv_query = cl.AskUserMessage(
|
53 |
+
content="Please enter a topic to begin!", timeout=15
|
54 |
+
).send()
|
55 |
+
|
56 |
+
# Obtain the top 30 results from Arxiv for the query
|
57 |
+
search = arxiv.Search(
|
58 |
+
query=arxiv_query["content"],
|
59 |
+
max_results=30,
|
60 |
+
sort_by=arxiv.SortCriterion.Relevance,
|
61 |
+
)
|
62 |
+
|
63 |
+
# download each of the pdfs
|
64 |
+
pdf_data = []
|
65 |
+
|
66 |
+
for result in search.results():
|
67 |
+
loader = PyMuPDFLoader(result.pdf_url)
|
68 |
+
loaded_pdf = loader.load()
|
69 |
+
|
70 |
+
for document in loaded_pdf:
|
71 |
+
document.metadata["source"] = result.entry_id
|
72 |
+
document.metadata["file_path"] = result.pdf_url
|
73 |
+
document.metadata["title"] = result.title
|
74 |
+
pdf_data.append(document)
|
75 |
+
|
76 |
+
# Create a Chroma vector store
|
77 |
+
embeddings = OpenAIEmbeddings(disallowed_special=())
|
78 |
+
docsearch = Chroma.from_documents(pdf_data, embeddings)
|
79 |
+
|
80 |
+
# Create a chain that uses the Chroma vector store
|
81 |
+
chain = RetrievalQAWithSourcesChain.from_chain_type(
|
82 |
+
ChatOpenAI(
|
83 |
+
model_name="gpt-4",
|
84 |
+
temperature=0,
|
85 |
+
openai_api_key=user_env.get("OPENAI_API_KEY"),
|
86 |
+
),
|
87 |
+
chain_type="stuff",
|
88 |
+
retriever=docsearch.as_retriever(),
|
89 |
+
return_source_documents=True,
|
90 |
+
)
|
91 |
+
|
92 |
+
# Let the user know that the system is ready
|
93 |
+
cl.Message(
|
94 |
+
content=f"We found a few papers about `{arxiv_query['content']}` you can now ask questions!"
|
95 |
+
).send()
|
96 |
+
|
97 |
+
return chain
|
98 |
+
|
99 |
+
|
100 |
+
@cl.langchain_postprocess
|
101 |
+
def process_response(res):
|
102 |
+
answer = res["answer"]
|
103 |
+
source_elements_dict = {}
|
104 |
+
source_elements = []
|
105 |
+
for idx, source in enumerate(res["source_documents"]):
|
106 |
+
title = source.metadata["title"]
|
107 |
+
|
108 |
+
if title not in source_elements_dict:
|
109 |
+
source_elements_dict[title] = {
|
110 |
+
"page_number": [source.metadata["page"]],
|
111 |
+
"url": source.metadata["file_path"],
|
112 |
+
}
|
113 |
+
|
114 |
+
else:
|
115 |
+
source_elements_dict[title]["page_number"].append(source.metadata["page"])
|
116 |
+
|
117 |
+
# sort the page numbers
|
118 |
+
source_elements_dict[title]["page_number"].sort()
|
119 |
+
|
120 |
+
for title, source in source_elements_dict.items():
|
121 |
+
# create a string for the page numbers
|
122 |
+
page_numbers = ", ".join([str(x) for x in source["page_number"]])
|
123 |
+
text_for_source = f"Page Number(s): {page_numbers}\nURL: {source['url']}"
|
124 |
+
source_elements.append(
|
125 |
+
cl.Text(name=title, text=text_for_source, display="inline")
|
126 |
+
)
|
127 |
+
|
128 |
+
cl.Message(content=answer, elements=source_elements).send()
|
chainlit.md
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ⚠️ Warning ⚠️
|
2 |
+
|
3 |
+
You will need a GPT-4 API key to use this app due to large context size!
|
4 |
+
|
5 |
+
# Welcome to AskArxiv powered by Chainlit!
|
6 |
+
|
7 |
+
In this app, you'll be able to enter a topic - and then ask ~30 papers from Arxiv about that topic!
|
8 |
+
|
9 |
+
### Link To Demo
|
10 |
+
|
11 |
+
[Hugging Face Space]()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
arxiv==1.4.7
|
2 |
+
langchain==0.0.193
|
3 |
+
chainlit
|
4 |
+
openai
|
5 |
+
chromadb
|
6 |
+
tiktoken
|