llmahmad commited on
Commit
3723b18
·
verified ·
1 Parent(s): 15b77df

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -0
app.py CHANGED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # app.py
2
+ !pip install transformers
3
+ !pip install streamlit
4
+
5
+ import streamlit as st
6
+ from transformers import pipeline
7
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
8
+ import torch
9
+ import gdown
10
+
11
+ # Download the model from Google Drive
12
+ @st.cache(allow_output_mutation=True)
13
+ def load_model_from_gdrive():
14
+ url = https://drive.google.com/drive/folders/19P3ZcWor8znyaOMJgx_gaHuOyf4alnP3?usp=drive_link # Replace with your actual Google Drive link
15
+ output = 'model.zip'
16
+ gdown.download(url, output, quiet=False)
17
+ # Unzip the model
18
+ import zipfile
19
+ with zipfile.ZipFile(output, 'r') as zip_ref:
20
+ zip_ref.extractall('model')
21
+ # Load the model and tokenizer
22
+ model = AutoModelForSeq2SeqLM.from_pretrained('model')
23
+ tokenizer = AutoTokenizer.from_pretrained('model')
24
+ return model, tokenizer
25
+
26
+ model, tokenizer = load_model_from_gdrive()
27
+ summarizer = pipeline("summarization", model=model, tokenizer=tokenizer)
28
+
29
+ # Streamlit app
30
+ st.title("Text Summarization App")
31
+ st.write("Enter the text you want to summarize:")
32
+
33
+ # Text input
34
+ user_input = st.text_area("Text to summarize", height=200)
35
+
36
+ # Summarize text
37
+ if st.button("Summarize"):
38
+ if user_input:
39
+ summary = summarizer(user_input, max_length=130, min_length=30, do_sample=False)
40
+ st.subheader("Summary:")
41
+ st.write(summary[0]['summary_text'])
42
+ else:
43
+ st.write("Please enter text to summarize.")