Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,21 @@
|
|
1 |
import os
|
2 |
-
os.system('pip install streamlit transformers torch')
|
3 |
-
|
4 |
import streamlit as st
|
5 |
-
from transformers import
|
6 |
-
import torch
|
7 |
|
8 |
-
|
|
|
9 |
|
10 |
# Load the model and tokenizer
|
11 |
model_path = '.' # Path to the current directory where files are located
|
12 |
|
13 |
-
tokenizer =
|
14 |
-
model =
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
st.title("Text Summarization with Fine-Tuned Model")
|
18 |
st.write("Enter text to generate a summary using the fine-tuned summarization model.")
|
@@ -21,9 +24,9 @@ text = st.text_area("Input Text", height=200)
|
|
21 |
if st.button("Summarize"):
|
22 |
if text:
|
23 |
with st.spinner("Summarizing..."):
|
24 |
-
summary =
|
25 |
st.success("Summary Generated")
|
26 |
-
st.write(summary
|
27 |
else:
|
28 |
st.warning("Please enter some text to summarize.")
|
29 |
|
@@ -39,4 +42,4 @@ if __name__ == "__main__":
|
|
39 |
</style>
|
40 |
""",
|
41 |
unsafe_allow_html=True
|
42 |
-
)
|
|
|
1 |
import os
|
|
|
|
|
2 |
import streamlit as st
|
3 |
+
from transformers import PegasusTokenizer, PegasusForConditionalGeneration
|
|
|
4 |
|
5 |
+
# Install necessary packages (only needed if not already installed)
|
6 |
+
os.system('pip install streamlit transformers torch')
|
7 |
|
8 |
# Load the model and tokenizer
|
9 |
model_path = '.' # Path to the current directory where files are located
|
10 |
|
11 |
+
tokenizer = PegasusTokenizer.from_pretrained(model_path)
|
12 |
+
model = PegasusForConditionalGeneration.from_pretrained(model_path)
|
13 |
+
|
14 |
+
def summarize_text(text):
|
15 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="longest")
|
16 |
+
summary_ids = model.generate(inputs["input_ids"], max_length=150, min_length=30, do_sample=False)
|
17 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
18 |
+
return summary
|
19 |
|
20 |
st.title("Text Summarization with Fine-Tuned Model")
|
21 |
st.write("Enter text to generate a summary using the fine-tuned summarization model.")
|
|
|
24 |
if st.button("Summarize"):
|
25 |
if text:
|
26 |
with st.spinner("Summarizing..."):
|
27 |
+
summary = summarize_text(text)
|
28 |
st.success("Summary Generated")
|
29 |
+
st.write(summary)
|
30 |
else:
|
31 |
st.warning("Please enter some text to summarize.")
|
32 |
|
|
|
42 |
</style>
|
43 |
""",
|
44 |
unsafe_allow_html=True
|
45 |
+
)
|