# app.py !pip install transformers !pip install streamlit import streamlit as st from transformers import pipeline import torch import gdown from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM # Load the model and tokenizer model_path = '.' # Path to the current directory where files are located tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForSeq2SeqLM.from_pretrained(model_path) summarizer = pipeline('summarization', model=model, tokenizer=tokenizer) st.title("Text Summarization with Fine-Tuned Model") st.write("Enter text to generate a summary using the fine-tuned summarization model.") text = st.text_area("Input Text", height=200) if st.button("Summarize"): if text: with st.spinner("Summarizing..."): summary = summarizer(text, max_length=150, min_length=30, do_sample=False) st.success("Summary Generated") st.write(summary[0]['summary_text']) else: st.warning("Please enter some text to summarize.") if __name__ == "__main__": st.set_option('deprecation.showfileUploaderEncoding', False) st.markdown( """ """, unsafe_allow_html=True )