import os os.system('pip install streamlit transformers torch sentencepiece') import streamlit as st from transformers import PegasusTokenizer, PegasusForConditionalGeneration # Load the model and tokenizer model_name = '.' # Path to the current directory where files are located tokenizer = PegasusTokenizer.from_pretrained(model_name) model = PegasusForConditionalGeneration.from_pretrained(model_name) def summarize_text(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="longest") summary_ids = model.generate(inputs["input_ids"], max_length=150, min_length=30, do_sample=False) summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) return summary st.title("Text Summarization with Fine-Tuned Model") st.write("Enter text to generate a summary using the fine-tuned summarization model.") text = st.text_area("Input Text", height=200) if st.button("Summarize"): if text: with st.spinner("Summarizing..."): summary = summarize_text(text) st.success("Summary Generated") st.write(summary) else: st.warning("Please enter some text to summarize.") if __name__ == "__main__": st.set_option('deprecation.showfileUploaderEncoding', False) st.markdown( """ """, unsafe_allow_html=True )