Spaces:
Runtime error
Runtime error
## ---------------------------------------------------------- | |
# A SDXL pipeline can take unlimited weighted prompt | |
# | |
# Author: Andrew Zhu | |
# Github: https://github.com/xhinker | |
# Medium: https://medium.com/@xhinker | |
## ----------------------------------------------------------- | |
import inspect | |
import os | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
import torch | |
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer | |
from diffusers import DiffusionPipeline, StableDiffusionXLPipeline | |
from diffusers.image_processor import VaeImageProcessor | |
from diffusers.loaders import ( | |
FromSingleFileMixin, | |
LoraLoaderMixin, | |
TextualInversionLoaderMixin, | |
) | |
from diffusers.models import AutoencoderKL, UNet2DConditionModel | |
from diffusers.models.attention_processor import ( | |
AttnProcessor2_0, | |
LoRAAttnProcessor2_0, | |
LoRAXFormersAttnProcessor, | |
XFormersAttnProcessor, | |
) | |
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput | |
from diffusers.schedulers import KarrasDiffusionSchedulers | |
from diffusers.utils import ( | |
is_accelerate_available, | |
is_accelerate_version, | |
is_invisible_watermark_available, | |
logging, | |
randn_tensor, | |
replace_example_docstring, | |
) | |
if is_invisible_watermark_available(): | |
from diffusers.pipelines.stable_diffusion_xl.watermark import ( | |
StableDiffusionXLWatermarker, | |
) | |
def parse_prompt_attention(text): | |
""" | |
Parses a string with attention tokens and returns a list of pairs: text and its associated weight. | |
Accepted tokens are: | |
(abc) - increases attention to abc by a multiplier of 1.1 | |
(abc:3.12) - increases attention to abc by a multiplier of 3.12 | |
[abc] - decreases attention to abc by a multiplier of 1.1 | |
\( - literal character '(' | |
\[ - literal character '[' | |
\) - literal character ')' | |
\] - literal character ']' | |
\\ - literal character '\' | |
anything else - just text | |
>>> parse_prompt_attention('normal text') | |
[['normal text', 1.0]] | |
>>> parse_prompt_attention('an (important) word') | |
[['an ', 1.0], ['important', 1.1], [' word', 1.0]] | |
>>> parse_prompt_attention('(unbalanced') | |
[['unbalanced', 1.1]] | |
>>> parse_prompt_attention('\(literal\]') | |
[['(literal]', 1.0]] | |
>>> parse_prompt_attention('(unnecessary)(parens)') | |
[['unnecessaryparens', 1.1]] | |
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).') | |
[['a ', 1.0], | |
['house', 1.5730000000000004], | |
[' ', 1.1], | |
['on', 1.0], | |
[' a ', 1.1], | |
['hill', 0.55], | |
[', sun, ', 1.1], | |
['sky', 1.4641000000000006], | |
['.', 1.1]] | |
""" | |
import re | |
re_attention = re.compile( | |
r""" | |
\\\(|\\\)|\\\[|\\]|\\\\|\\|\(|\[|:([+-]?[.\d]+)\)| | |
\)|]|[^\\()\[\]:]+|: | |
""", | |
re.X, | |
) | |
re_break = re.compile(r"\s*\bBREAK\b\s*", re.S) | |
res = [] | |
round_brackets = [] | |
square_brackets = [] | |
round_bracket_multiplier = 1.1 | |
square_bracket_multiplier = 1 / 1.1 | |
def multiply_range(start_position, multiplier): | |
for p in range(start_position, len(res)): | |
res[p][1] *= multiplier | |
for m in re_attention.finditer(text): | |
text = m.group(0) | |
weight = m.group(1) | |
if text.startswith("\\"): | |
res.append([text[1:], 1.0]) | |
elif text == "(": | |
round_brackets.append(len(res)) | |
elif text == "[": | |
square_brackets.append(len(res)) | |
elif weight is not None and len(round_brackets) > 0: | |
multiply_range(round_brackets.pop(), float(weight)) | |
elif text == ")" and len(round_brackets) > 0: | |
multiply_range(round_brackets.pop(), round_bracket_multiplier) | |
elif text == "]" and len(square_brackets) > 0: | |
multiply_range(square_brackets.pop(), square_bracket_multiplier) | |
else: | |
parts = re.split(re_break, text) | |
for i, part in enumerate(parts): | |
if i > 0: | |
res.append(["BREAK", -1]) | |
res.append([part, 1.0]) | |
for pos in round_brackets: | |
multiply_range(pos, round_bracket_multiplier) | |
for pos in square_brackets: | |
multiply_range(pos, square_bracket_multiplier) | |
if len(res) == 0: | |
res = [["", 1.0]] | |
# merge runs of identical weights | |
i = 0 | |
while i + 1 < len(res): | |
if res[i][1] == res[i + 1][1]: | |
res[i][0] += res[i + 1][0] | |
res.pop(i + 1) | |
else: | |
i += 1 | |
return res | |
def get_prompts_tokens_with_weights(clip_tokenizer: CLIPTokenizer, prompt: str): | |
""" | |
Get prompt token ids and weights, this function works for both prompt and negative prompt | |
Args: | |
pipe (CLIPTokenizer) | |
A CLIPTokenizer | |
prompt (str) | |
A prompt string with weights | |
Returns: | |
text_tokens (list) | |
A list contains token ids | |
text_weight (list) | |
A list contains the correspodent weight of token ids | |
Example: | |
import torch | |
from transformers import CLIPTokenizer | |
clip_tokenizer = CLIPTokenizer.from_pretrained( | |
"stablediffusionapi/deliberate-v2" | |
, subfolder = "tokenizer" | |
, dtype = torch.float16 | |
) | |
token_id_list, token_weight_list = get_prompts_tokens_with_weights( | |
clip_tokenizer = clip_tokenizer | |
,prompt = "a (red:1.5) cat"*70 | |
) | |
""" | |
texts_and_weights = parse_prompt_attention(prompt) | |
text_tokens, text_weights = [], [] | |
for word, weight in texts_and_weights: | |
# tokenize and discard the starting and the ending token | |
token = clip_tokenizer(word, truncation=False).input_ids[ | |
1:-1 | |
] # so that tokenize whatever length prompt | |
# the returned token is a 1d list: [320, 1125, 539, 320] | |
# merge the new tokens to the all tokens holder: text_tokens | |
text_tokens = [*text_tokens, *token] | |
# each token chunk will come with one weight, like ['red cat', 2.0] | |
# need to expand weight for each token. | |
chunk_weights = [weight] * len(token) | |
# append the weight back to the weight holder: text_weights | |
text_weights = [*text_weights, *chunk_weights] | |
return text_tokens, text_weights | |
def group_tokens_and_weights(token_ids: list, weights: list, pad_last_block=False): | |
""" | |
Produce tokens and weights in groups and pad the missing tokens | |
Args: | |
token_ids (list) | |
The token ids from tokenizer | |
weights (list) | |
The weights list from function get_prompts_tokens_with_weights | |
pad_last_block (bool) | |
Control if fill the last token list to 75 tokens with eos | |
Returns: | |
new_token_ids (2d list) | |
new_weights (2d list) | |
Example: | |
token_groups,weight_groups = group_tokens_and_weights( | |
token_ids = token_id_list | |
, weights = token_weight_list | |
) | |
""" | |
bos, eos = 49406, 49407 | |
# this will be a 2d list | |
new_token_ids = [] | |
new_weights = [] | |
while len(token_ids) >= 75: | |
# get the first 75 tokens | |
head_75_tokens = [token_ids.pop(0) for _ in range(75)] | |
head_75_weights = [weights.pop(0) for _ in range(75)] | |
# extract token ids and weights | |
temp_77_token_ids = [bos] + head_75_tokens + [eos] | |
temp_77_weights = [1.0] + head_75_weights + [1.0] | |
# add 77 token and weights chunk to the holder list | |
new_token_ids.append(temp_77_token_ids) | |
new_weights.append(temp_77_weights) | |
# padding the left | |
if len(token_ids) > 0: | |
padding_len = 75 - len(token_ids) if pad_last_block else 0 | |
temp_77_token_ids = [bos] + token_ids + [eos] * padding_len + [eos] | |
new_token_ids.append(temp_77_token_ids) | |
temp_77_weights = [1.0] + weights + [1.0] * padding_len + [1.0] | |
new_weights.append(temp_77_weights) | |
return new_token_ids, new_weights | |
def get_weighted_text_embeddings_sdxl( | |
pipe: StableDiffusionXLPipeline, | |
prompt: str = "", | |
prompt_2: str = None, | |
neg_prompt: str = "", | |
neg_prompt_2: str = None, | |
): | |
""" | |
This function can process long prompt with weights, no length limitation | |
for Stable Diffusion XL | |
Args: | |
pipe (StableDiffusionPipeline) | |
prompt (str) | |
prompt_2 (str) | |
neg_prompt (str) | |
neg_prompt_2 (str) | |
Returns: | |
prompt_embeds (torch.Tensor) | |
neg_prompt_embeds (torch.Tensor) | |
""" | |
if prompt_2: | |
prompt = f"{prompt} {prompt_2}" | |
if neg_prompt_2: | |
neg_prompt = f"{neg_prompt} {neg_prompt_2}" | |
eos = pipe.tokenizer.eos_token_id | |
# tokenizer 1 | |
prompt_tokens, prompt_weights = get_prompts_tokens_with_weights( | |
pipe.tokenizer, prompt | |
) | |
neg_prompt_tokens, neg_prompt_weights = get_prompts_tokens_with_weights( | |
pipe.tokenizer, neg_prompt | |
) | |
# tokenizer 2 | |
prompt_tokens_2, prompt_weights_2 = get_prompts_tokens_with_weights( | |
pipe.tokenizer_2, prompt | |
) | |
neg_prompt_tokens_2, neg_prompt_weights_2 = get_prompts_tokens_with_weights( | |
pipe.tokenizer_2, neg_prompt | |
) | |
# padding the shorter one for prompt set 1 | |
prompt_token_len = len(prompt_tokens) | |
neg_prompt_token_len = len(neg_prompt_tokens) | |
if prompt_token_len > neg_prompt_token_len: | |
# padding the neg_prompt with eos token | |
neg_prompt_tokens = neg_prompt_tokens + [eos] * abs( | |
prompt_token_len - neg_prompt_token_len | |
) | |
neg_prompt_weights = neg_prompt_weights + [1.0] * abs( | |
prompt_token_len - neg_prompt_token_len | |
) | |
else: | |
# padding the prompt | |
prompt_tokens = prompt_tokens + [eos] * abs( | |
prompt_token_len - neg_prompt_token_len | |
) | |
prompt_weights = prompt_weights + [1.0] * abs( | |
prompt_token_len - neg_prompt_token_len | |
) | |
# padding the shorter one for token set 2 | |
prompt_token_len_2 = len(prompt_tokens_2) | |
neg_prompt_token_len_2 = len(neg_prompt_tokens_2) | |
if prompt_token_len_2 > neg_prompt_token_len_2: | |
# padding the neg_prompt with eos token | |
neg_prompt_tokens_2 = neg_prompt_tokens_2 + [eos] * abs( | |
prompt_token_len_2 - neg_prompt_token_len_2 | |
) | |
neg_prompt_weights_2 = neg_prompt_weights_2 + [1.0] * abs( | |
prompt_token_len_2 - neg_prompt_token_len_2 | |
) | |
else: | |
# padding the prompt | |
prompt_tokens_2 = prompt_tokens_2 + [eos] * abs( | |
prompt_token_len_2 - neg_prompt_token_len_2 | |
) | |
prompt_weights_2 = prompt_weights + [1.0] * abs( | |
prompt_token_len_2 - neg_prompt_token_len_2 | |
) | |
embeds = [] | |
neg_embeds = [] | |
prompt_token_groups, prompt_weight_groups = group_tokens_and_weights( | |
prompt_tokens.copy(), prompt_weights.copy() | |
) | |
neg_prompt_token_groups, neg_prompt_weight_groups = group_tokens_and_weights( | |
neg_prompt_tokens.copy(), neg_prompt_weights.copy() | |
) | |
prompt_token_groups_2, prompt_weight_groups_2 = group_tokens_and_weights( | |
prompt_tokens_2.copy(), prompt_weights_2.copy() | |
) | |
neg_prompt_token_groups_2, neg_prompt_weight_groups_2 = group_tokens_and_weights( | |
neg_prompt_tokens_2.copy(), neg_prompt_weights_2.copy() | |
) | |
# get prompt embeddings one by one is not working. | |
for i in range(len(prompt_token_groups)): | |
# get positive prompt embeddings with weights | |
token_tensor = torch.tensor( | |
[prompt_token_groups[i]], dtype=torch.long, device=pipe.device | |
) | |
weight_tensor = torch.tensor( | |
prompt_weight_groups[i], dtype=torch.float16, device=pipe.device | |
) | |
token_tensor_2 = torch.tensor( | |
[prompt_token_groups_2[i]], dtype=torch.long, device=pipe.device | |
) | |
# use first text encoder | |
prompt_embeds_1 = pipe.text_encoder( | |
token_tensor.to(pipe.device), output_hidden_states=True | |
) | |
prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-2] | |
# use second text encoder | |
prompt_embeds_2 = pipe.text_encoder_2( | |
token_tensor_2.to(pipe.device), output_hidden_states=True | |
) | |
prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-2] | |
pooled_prompt_embeds = prompt_embeds_2[0] | |
prompt_embeds_list = [ | |
prompt_embeds_1_hidden_states, | |
prompt_embeds_2_hidden_states, | |
] | |
token_embedding = torch.concat(prompt_embeds_list, dim=-1).squeeze(0) | |
for j in range(len(weight_tensor)): | |
if weight_tensor[j] != 1.0: | |
token_embedding[j] = ( | |
token_embedding[-1] | |
+ (token_embedding[j] - token_embedding[-1]) * weight_tensor[j] | |
) | |
token_embedding = token_embedding.unsqueeze(0) | |
embeds.append(token_embedding) | |
# get negative prompt embeddings with weights | |
neg_token_tensor = torch.tensor( | |
[neg_prompt_token_groups[i]], dtype=torch.long, device=pipe.device | |
) | |
neg_token_tensor_2 = torch.tensor( | |
[neg_prompt_token_groups_2[i]], dtype=torch.long, device=pipe.device | |
) | |
neg_weight_tensor = torch.tensor( | |
neg_prompt_weight_groups[i], dtype=torch.float16, device=pipe.device | |
) | |
# use first text encoder | |
neg_prompt_embeds_1 = pipe.text_encoder( | |
neg_token_tensor.to(pipe.device), output_hidden_states=True | |
) | |
neg_prompt_embeds_1_hidden_states = neg_prompt_embeds_1.hidden_states[-2] | |
# use second text encoder | |
neg_prompt_embeds_2 = pipe.text_encoder_2( | |
neg_token_tensor_2.to(pipe.device), output_hidden_states=True | |
) | |
neg_prompt_embeds_2_hidden_states = neg_prompt_embeds_2.hidden_states[-2] | |
negative_pooled_prompt_embeds = neg_prompt_embeds_2[0] | |
neg_prompt_embeds_list = [ | |
neg_prompt_embeds_1_hidden_states, | |
neg_prompt_embeds_2_hidden_states, | |
] | |
neg_token_embedding = torch.concat(neg_prompt_embeds_list, dim=-1).squeeze(0) | |
for z in range(len(neg_weight_tensor)): | |
if neg_weight_tensor[z] != 1.0: | |
neg_token_embedding[z] = ( | |
neg_token_embedding[-1] | |
+ (neg_token_embedding[z] - neg_token_embedding[-1]) | |
* neg_weight_tensor[z] | |
) | |
neg_token_embedding = neg_token_embedding.unsqueeze(0) | |
neg_embeds.append(neg_token_embedding) | |
prompt_embeds = torch.cat(embeds, dim=1) | |
negative_prompt_embeds = torch.cat(neg_embeds, dim=1) | |
return ( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) | |
# ------------------------------------------------------------------------------------------------------------------------------- | |
# reuse the backbone code from StableDiffusionXLPipeline | |
# ------------------------------------------------------------------------------------------------------------------------------- | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
from diffusers import DiffusionPipeline | |
import torch | |
pipe = DiffusionPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0" | |
, torch_dtype = torch.float16 | |
, use_safetensors = True | |
, variant = "fp16" | |
, custom_pipeline = "lpw_stable_diffusion_xl", | |
) | |
prompt = "a white cat running on the grass"*20 | |
prompt2 = "play a football"*20 | |
prompt = f"{prompt},{prompt2}" | |
neg_prompt = "blur, low quality" | |
pipe.to("cuda") | |
images = pipe( | |
prompt = prompt | |
, negative_prompt = neg_prompt | |
).images[0] | |
pipe.to("cpu") | |
torch.cuda.empty_cache() | |
images | |
``` | |
""" | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg | |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | |
""" | |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and | |
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 | |
""" | |
std_text = noise_pred_text.std( | |
dim=list(range(1, noise_pred_text.ndim)), keepdim=True | |
) | |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | |
# rescale the results from guidance (fixes overexposure) | |
noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | |
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images | |
noise_cfg = ( | |
guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | |
) | |
return noise_cfg | |
class SDXLLongPromptWeightingPipeline( | |
DiffusionPipeline, FromSingleFileMixin, LoraLoaderMixin | |
): | |
r""" | |
Pipeline for text-to-image generation using Stable Diffusion XL. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
In addition the pipeline inherits the following loading methods: | |
- *LoRA*: [`StableDiffusionXLPipeline.load_lora_weights`] | |
- *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`] | |
as well as the following saving methods: | |
- *LoRA*: [`loaders.StableDiffusionXLPipeline.save_lora_weights`] | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`CLIPTextModel`]): | |
Frozen text-encoder. Stable Diffusion XL uses the text portion of | |
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
text_encoder_2 ([` CLIPTextModelWithProjection`]): | |
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of | |
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), | |
specifically the | |
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) | |
variant. | |
tokenizer (`CLIPTokenizer`): | |
Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
tokenizer_2 (`CLIPTokenizer`): | |
Second Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
""" | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
text_encoder_2: CLIPTextModelWithProjection, | |
tokenizer: CLIPTokenizer, | |
tokenizer_2: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
scheduler: KarrasDiffusionSchedulers, | |
force_zeros_for_empty_prompt: bool = True, | |
add_watermarker: Optional[bool] = None, | |
): | |
super().__init__() | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
text_encoder_2=text_encoder_2, | |
tokenizer=tokenizer, | |
tokenizer_2=tokenizer_2, | |
unet=unet, | |
scheduler=scheduler, | |
) | |
self.register_to_config( | |
force_zeros_for_empty_prompt=force_zeros_for_empty_prompt | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
self.default_sample_size = self.unet.config.sample_size | |
add_watermarker = ( | |
add_watermarker | |
if add_watermarker is not None | |
else is_invisible_watermark_available() | |
) | |
if add_watermarker: | |
self.watermark = StableDiffusionXLWatermarker() | |
else: | |
self.watermark = None | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing | |
def enable_vae_slicing(self): | |
r""" | |
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
""" | |
self.vae.enable_slicing() | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing | |
def disable_vae_slicing(self): | |
r""" | |
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to | |
computing decoding in one step. | |
""" | |
self.vae.disable_slicing() | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling | |
def enable_vae_tiling(self): | |
r""" | |
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | |
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | |
processing larger images. | |
""" | |
self.vae.enable_tiling() | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling | |
def disable_vae_tiling(self): | |
r""" | |
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to | |
computing decoding in one step. | |
""" | |
self.vae.disable_tiling() | |
def enable_model_cpu_offload(self, gpu_id=0): | |
r""" | |
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared | |
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` | |
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with | |
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. | |
""" | |
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): | |
from accelerate import cpu_offload_with_hook | |
else: | |
raise ImportError( | |
"`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." | |
) | |
device = torch.device(f"cuda:{gpu_id}") | |
if self.device.type != "cpu": | |
self.to("cpu", silence_dtype_warnings=True) | |
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) | |
model_sequence = ( | |
[self.text_encoder, self.text_encoder_2] | |
if self.text_encoder is not None | |
else [self.text_encoder_2] | |
) | |
model_sequence.extend([self.unet, self.vae]) | |
hook = None | |
for cpu_offloaded_model in model_sequence: | |
_, hook = cpu_offload_with_hook( | |
cpu_offloaded_model, device, prev_module_hook=hook | |
) | |
# We'll offload the last model manually. | |
self.final_offload_hook = hook | |
def encode_prompt( | |
self, | |
prompt: str, | |
prompt_2: Optional[str] = None, | |
device: Optional[torch.device] = None, | |
num_images_per_prompt: int = 1, | |
do_classifier_free_guidance: bool = True, | |
negative_prompt: Optional[str] = None, | |
negative_prompt_2: Optional[str] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
lora_scale: Optional[float] = None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
prompt_2 (`str` or `List[str]`, *optional*): | |
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
used in both text-encoders | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
negative_prompt_2 (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | |
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
input argument. | |
lora_scale (`float`, *optional*): | |
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
""" | |
device = device or self._execution_device | |
# set lora scale so that monkey patched LoRA | |
# function of text encoder can correctly access it | |
if lora_scale is not None and isinstance(self, LoraLoaderMixin): | |
self._lora_scale = lora_scale | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
# Define tokenizers and text encoders | |
tokenizers = ( | |
[self.tokenizer, self.tokenizer_2] | |
if self.tokenizer is not None | |
else [self.tokenizer_2] | |
) | |
text_encoders = ( | |
[self.text_encoder, self.text_encoder_2] | |
if self.text_encoder is not None | |
else [self.text_encoder_2] | |
) | |
if prompt_embeds is None: | |
prompt_2 = prompt_2 or prompt | |
# textual inversion: procecss multi-vector tokens if necessary | |
prompt_embeds_list = [] | |
prompts = [prompt, prompt_2] | |
for prompt, tokenizer, text_encoder in zip( | |
prompts, tokenizers, text_encoders | |
): | |
if isinstance(self, TextualInversionLoaderMixin): | |
prompt = self.maybe_convert_prompt(prompt, tokenizer) | |
text_inputs = tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = tokenizer( | |
prompt, padding="longest", return_tensors="pt" | |
).input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[ | |
-1 | |
] and not torch.equal(text_input_ids, untruncated_ids): | |
removed_text = tokenizer.batch_decode( | |
untruncated_ids[:, tokenizer.model_max_length - 1 : -1] | |
) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
prompt_embeds = text_encoder( | |
text_input_ids.to(device), | |
output_hidden_states=True, | |
) | |
# We are only ALWAYS interested in the pooled output of the final text encoder | |
pooled_prompt_embeds = prompt_embeds[0] | |
prompt_embeds = prompt_embeds.hidden_states[-2] | |
prompt_embeds_list.append(prompt_embeds) | |
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) | |
# get unconditional embeddings for classifier free guidance | |
zero_out_negative_prompt = ( | |
negative_prompt is None and self.config.force_zeros_for_empty_prompt | |
) | |
if ( | |
do_classifier_free_guidance | |
and negative_prompt_embeds is None | |
and zero_out_negative_prompt | |
): | |
negative_prompt_embeds = torch.zeros_like(prompt_embeds) | |
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) | |
elif do_classifier_free_guidance and negative_prompt_embeds is None: | |
negative_prompt = negative_prompt or "" | |
negative_prompt_2 = negative_prompt_2 or negative_prompt | |
uncond_tokens: List[str] | |
if prompt is not None and type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt, negative_prompt_2] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = [negative_prompt, negative_prompt_2] | |
negative_prompt_embeds_list = [] | |
for negative_prompt, tokenizer, text_encoder in zip( | |
uncond_tokens, tokenizers, text_encoders | |
): | |
if isinstance(self, TextualInversionLoaderMixin): | |
negative_prompt = self.maybe_convert_prompt( | |
negative_prompt, tokenizer | |
) | |
max_length = prompt_embeds.shape[1] | |
uncond_input = tokenizer( | |
negative_prompt, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
negative_prompt_embeds = text_encoder( | |
uncond_input.input_ids.to(device), | |
output_hidden_states=True, | |
) | |
# We are only ALWAYS interested in the pooled output of the final text encoder | |
negative_pooled_prompt_embeds = negative_prompt_embeds[0] | |
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] | |
negative_prompt_embeds_list.append(negative_prompt_embeds) | |
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) | |
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view( | |
bs_embed * num_images_per_prompt, seq_len, -1 | |
) | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to( | |
dtype=self.text_encoder_2.dtype, device=device | |
) | |
negative_prompt_embeds = negative_prompt_embeds.repeat( | |
1, num_images_per_prompt, 1 | |
) | |
negative_prompt_embeds = negative_prompt_embeds.view( | |
batch_size * num_images_per_prompt, seq_len, -1 | |
) | |
pooled_prompt_embeds = pooled_prompt_embeds.repeat( | |
1, num_images_per_prompt | |
).view(bs_embed * num_images_per_prompt, -1) | |
if do_classifier_free_guidance: | |
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat( | |
1, num_images_per_prompt | |
).view(bs_embed * num_images_per_prompt, -1) | |
return ( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set( | |
inspect.signature(self.scheduler.step).parameters.keys() | |
) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set( | |
inspect.signature(self.scheduler.step).parameters.keys() | |
) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs( | |
self, | |
prompt, | |
prompt_2, | |
height, | |
width, | |
callback_steps, | |
negative_prompt=None, | |
negative_prompt_2=None, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
pooled_prompt_embeds=None, | |
negative_pooled_prompt_embeds=None, | |
): | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError( | |
f"`height` and `width` have to be divisible by 8 but are {height} and {width}." | |
) | |
if (callback_steps is None) or ( | |
callback_steps is not None | |
and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt_2 is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and ( | |
not isinstance(prompt, str) and not isinstance(prompt, list) | |
): | |
raise ValueError( | |
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}" | |
) | |
elif prompt_2 is not None and ( | |
not isinstance(prompt_2, str) and not isinstance(prompt_2, list) | |
): | |
raise ValueError( | |
f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}" | |
) | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
elif negative_prompt_2 is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
if prompt_embeds is not None and pooled_prompt_embeds is None: | |
raise ValueError( | |
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." | |
) | |
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: | |
raise ValueError( | |
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." | |
) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
def prepare_latents( | |
self, | |
batch_size, | |
num_channels_latents, | |
height, | |
width, | |
dtype, | |
device, | |
generator, | |
latents=None, | |
): | |
shape = ( | |
batch_size, | |
num_channels_latents, | |
height // self.vae_scale_factor, | |
width // self.vae_scale_factor, | |
) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
latents = randn_tensor( | |
shape, generator=generator, device=device, dtype=dtype | |
) | |
else: | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
def _get_add_time_ids( | |
self, original_size, crops_coords_top_left, target_size, dtype | |
): | |
add_time_ids = list(original_size + crops_coords_top_left + target_size) | |
passed_add_embed_dim = ( | |
self.unet.config.addition_time_embed_dim * len(add_time_ids) | |
+ self.text_encoder_2.config.projection_dim | |
) | |
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features | |
if expected_add_embed_dim != passed_add_embed_dim: | |
raise ValueError( | |
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." | |
) | |
add_time_ids = torch.tensor([add_time_ids], dtype=dtype) | |
return add_time_ids | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae | |
def upcast_vae(self): | |
dtype = self.vae.dtype | |
self.vae.to(dtype=torch.float32) | |
use_torch_2_0_or_xformers = isinstance( | |
self.vae.decoder.mid_block.attentions[0].processor, | |
( | |
AttnProcessor2_0, | |
XFormersAttnProcessor, | |
LoRAXFormersAttnProcessor, | |
LoRAAttnProcessor2_0, | |
), | |
) | |
# if xformers or torch_2_0 is used attention block does not need | |
# to be in float32 which can save lots of memory | |
if use_torch_2_0_or_xformers: | |
self.vae.post_quant_conv.to(dtype) | |
self.vae.decoder.conv_in.to(dtype) | |
self.vae.decoder.mid_block.to(dtype) | |
def __call__( | |
self, | |
prompt: str = None, | |
prompt_2: Optional[str] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
denoising_end: Optional[float] = None, | |
guidance_scale: float = 5.0, | |
negative_prompt: Optional[str] = None, | |
negative_prompt_2: Optional[str] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
guidance_rescale: float = 0.0, | |
original_size: Optional[Tuple[int, int]] = None, | |
crops_coords_top_left: Tuple[int, int] = (0, 0), | |
target_size: Optional[Tuple[int, int]] = None, | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str`): | |
The prompt to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
prompt_2 (`str`): | |
The prompt to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
used in both text-encoders | |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
denoising_end (`float`, *optional*): | |
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be | |
completed before it is intentionally prematurely terminated. As a result, the returned sample will | |
still retain a substantial amount of noise as determined by the discrete timesteps selected by the | |
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a | |
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image | |
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output) | |
guidance_scale (`float`, *optional*, defaults to 5.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
negative_prompt (`str`): | |
The prompt not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
negative_prompt_2 (`str`): | |
The prompt not to guide the image generation to be sent to `tokenizer_2` and | |
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead | |
of a plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
guidance_rescale (`float`, *optional*, defaults to 0.7): | |
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are | |
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of | |
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). | |
Guidance rescale factor should fix overexposure when using zero terminal SNR. | |
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. | |
`original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as | |
explained in section 2.2 of | |
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): | |
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position | |
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting | |
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of | |
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
For most cases, `target_size` should be set to the desired height and width of the generated image. If | |
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in | |
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
Examples: | |
Returns: | |
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`: | |
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a | |
`tuple`. When returning a tuple, the first element is a list with the generated images. | |
""" | |
# 0. Default height and width to unet | |
height = height or self.default_sample_size * self.vae_scale_factor | |
width = width or self.default_sample_size * self.vae_scale_factor | |
original_size = original_size or (height, width) | |
target_size = target_size or (height, width) | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
prompt_2, | |
height, | |
width, | |
callback_steps, | |
negative_prompt, | |
negative_prompt_2, | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
( | |
cross_attention_kwargs.get("scale", None) | |
if cross_attention_kwargs is not None | |
else None | |
) | |
negative_prompt = negative_prompt if negative_prompt is not None else "" | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = get_weighted_text_embeddings_sdxl( | |
pipe=self, prompt=prompt, neg_prompt=negative_prompt | |
) | |
# 4. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 5. Prepare latent variables | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 7. Prepare added time ids & embeddings | |
add_text_embeds = pooled_prompt_embeds | |
add_time_ids = self._get_add_time_ids( | |
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype | |
) | |
if do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
add_text_embeds = torch.cat( | |
[negative_pooled_prompt_embeds, add_text_embeds], dim=0 | |
) | |
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) | |
prompt_embeds = prompt_embeds.to(device) | |
add_text_embeds = add_text_embeds.to(device) | |
add_time_ids = add_time_ids.to(device).repeat( | |
batch_size * num_images_per_prompt, 1 | |
) | |
# 8. Denoising loop | |
num_warmup_steps = max( | |
len(timesteps) - num_inference_steps * self.scheduler.order, 0 | |
) | |
# 7.1 Apply denoising_end | |
if ( | |
denoising_end is not None | |
and type(denoising_end) == float | |
and denoising_end > 0 | |
and denoising_end < 1 | |
): | |
discrete_timestep_cutoff = int( | |
round( | |
self.scheduler.config.num_train_timesteps | |
- (denoising_end * self.scheduler.config.num_train_timesteps) | |
) | |
) | |
num_inference_steps = len( | |
list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)) | |
) | |
timesteps = timesteps[:num_inference_steps] | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = ( | |
torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
) | |
latent_model_input = self.scheduler.scale_model_input( | |
latent_model_input, t | |
) | |
# predict the noise residual | |
added_cond_kwargs = { | |
"text_embeds": add_text_embeds, | |
"time_ids": add_time_ids, | |
} | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * ( | |
noise_pred_text - noise_pred_uncond | |
) | |
if do_classifier_free_guidance and guidance_rescale > 0.0: | |
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
noise_pred = rescale_noise_cfg( | |
noise_pred, noise_pred_text, guidance_rescale=guidance_rescale | |
) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step( | |
noise_pred, t, latents, **extra_step_kwargs, return_dict=False | |
)[0] | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ( | |
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 | |
): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
# make sure the VAE is in float32 mode, as it overflows in float16 | |
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: | |
self.upcast_vae() | |
latents = latents.to( | |
next(iter(self.vae.post_quant_conv.parameters())).dtype | |
) | |
if not output_type == "latent": | |
image = self.vae.decode( | |
latents / self.vae.config.scaling_factor, return_dict=False | |
)[0] | |
else: | |
image = latents | |
return StableDiffusionXLPipelineOutput(images=image) | |
# apply watermark if available | |
if self.watermark is not None: | |
image = self.watermark.apply_watermark(image) | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
# Offload last model to CPU | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.final_offload_hook.offload() | |
if not return_dict: | |
return (image,) | |
return StableDiffusionXLPipelineOutput(images=image) | |
# Overrride to properly handle the loading and unloading of the additional text encoder. | |
def load_lora_weights( | |
self, | |
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | |
**kwargs, | |
): | |
# We could have accessed the unet config from `lora_state_dict()` too. We pass | |
# it here explicitly to be able to tell that it's coming from an SDXL | |
# pipeline. | |
state_dict, network_alphas = self.lora_state_dict( | |
pretrained_model_name_or_path_or_dict, | |
unet_config=self.unet.config, | |
**kwargs, | |
) | |
self.load_lora_into_unet( | |
state_dict, network_alphas=network_alphas, unet=self.unet | |
) | |
text_encoder_state_dict = { | |
k: v for k, v in state_dict.items() if "text_encoder." in k | |
} | |
if len(text_encoder_state_dict) > 0: | |
self.load_lora_into_text_encoder( | |
text_encoder_state_dict, | |
network_alphas=network_alphas, | |
text_encoder=self.text_encoder, | |
prefix="text_encoder", | |
lora_scale=self.lora_scale, | |
) | |
text_encoder_2_state_dict = { | |
k: v for k, v in state_dict.items() if "text_encoder_2." in k | |
} | |
if len(text_encoder_2_state_dict) > 0: | |
self.load_lora_into_text_encoder( | |
text_encoder_2_state_dict, | |
network_alphas=network_alphas, | |
text_encoder=self.text_encoder_2, | |
prefix="text_encoder_2", | |
lora_scale=self.lora_scale, | |
) | |
def save_lora_weights( | |
self, | |
save_directory: Union[str, os.PathLike], | |
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | |
text_encoder_lora_layers: Dict[ | |
str, Union[torch.nn.Module, torch.Tensor] | |
] = None, | |
text_encoder_2_lora_layers: Dict[ | |
str, Union[torch.nn.Module, torch.Tensor] | |
] = None, | |
is_main_process: bool = True, | |
weight_name: str = None, | |
save_function: Callable = None, | |
safe_serialization: bool = False, | |
): | |
state_dict = {} | |
def pack_weights(layers, prefix): | |
layers_weights = ( | |
layers.state_dict() if isinstance(layers, torch.nn.Module) else layers | |
) | |
layers_state_dict = { | |
f"{prefix}.{module_name}": param | |
for module_name, param in layers_weights.items() | |
} | |
return layers_state_dict | |
state_dict.update(pack_weights(unet_lora_layers, "unet")) | |
if text_encoder_lora_layers and text_encoder_2_lora_layers: | |
state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder")) | |
state_dict.update( | |
pack_weights(text_encoder_2_lora_layers, "text_encoder_2") | |
) | |
self.write_lora_layers( | |
state_dict=state_dict, | |
save_directory=save_directory, | |
is_main_process=is_main_process, | |
weight_name=weight_name, | |
save_function=save_function, | |
safe_serialization=safe_serialization, | |
) | |
def _remove_text_encoder_monkey_patch(self): | |
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder) | |
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2) | |