unsubscribe commited on
Commit
c52ae5b
·
1 Parent(s): 298b99e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -203
README.md CHANGED
@@ -31,206 +31,3 @@ ______________________________________________________________________
31
 
32
  ______________________________________________________________________
33
 
34
- ## Introduction
35
-
36
- LMDeploy is a toolkit for compressing, deploying, and serving LLM, developed by the [MMRazor](https://github.com/open-mmlab/mmrazor) and [MMDeploy](https://github.com/open-mmlab/mmdeploy) teams. It has the following core features:
37
-
38
- - **Efficient Inference Engine (TurboMind)**: Based on [FasterTransformer](https://github.com/NVIDIA/FasterTransformer), we have implemented an efficient inference engine - TurboMind, which supports the inference of LLaMA and its variant models on NVIDIA GPUs.
39
-
40
- - **Interactive Inference Mode**: By caching the k/v of attention during multi-round dialogue processes, it remembers dialogue history, thus avoiding repetitive processing of historical sessions.
41
-
42
- - **Multi-GPU Model Deployment and Quantization**: We provide comprehensive model deployment and quantification support, and have been validated at different scales.
43
-
44
- - **Persistent Batch Inference**: Further optimization of model execution efficiency.
45
-
46
- ![PersistentBatchInference](https://github.com/InternLM/lmdeploy/assets/67539920/e3876167-0671-44fc-ac52-5a0f9382493e)
47
-
48
- ## Performance
49
-
50
- **Case I**: output token throughput with fixed input token and output token number (1, 2048)
51
-
52
- **Case II**: request throughput with real conversation data
53
-
54
- Test Setting: LLaMA-7B, NVIDIA A100(80G)
55
-
56
- The output token throughput of TurboMind exceeds 2000 tokens/s, which is about 5% - 15% higher than DeepSpeed overall and outperforms huggingface transformers by up to 2.3x.
57
- And the request throughput of TurboMind is 30% higher than vLLM.
58
-
59
- ![benchmark](https://github.com/InternLM/lmdeploy/assets/4560679/7775c518-608e-4e5b-be73-7645a444e774)
60
-
61
- ## Quick Start
62
-
63
- ### Installation
64
-
65
- Install lmdeploy with pip ( python 3.8+) or [from source](./docs/en/build.md)
66
-
67
- ```shell
68
- pip install lmdeploy
69
- ```
70
-
71
- ### Deploy InternLM
72
-
73
- #### Get InternLM model
74
-
75
- ```shell
76
- # 1. Download InternLM model
77
-
78
- # Make sure you have git-lfs installed (https://git-lfs.com)
79
- git lfs install
80
- git clone https://huggingface.co/internlm/internlm-chat-7b /path/to/internlm-chat-7b
81
-
82
- # if you want to clone without large files – just their pointers
83
- # prepend your git clone with the following env var:
84
- GIT_LFS_SKIP_SMUDGE=1
85
-
86
- # 2. Convert InternLM model to turbomind's format, which will be in "./workspace" by default
87
- python3 -m lmdeploy.serve.turbomind.deploy internlm-chat-7b /path/to/internlm-chat-7b
88
-
89
- ```
90
-
91
- #### Inference by TurboMind
92
-
93
- ```shell
94
- python -m lmdeploy.turbomind.chat ./workspace
95
- ```
96
-
97
- > **Note**<br />
98
- > When inferring with FP16 precision, the InternLM-7B model requires at least 15.7G of GPU memory overhead on TurboMind. <br />
99
- > It is recommended to use NVIDIA cards such as 3090, V100, A100, etc.
100
- > Disable GPU ECC can free up 10% memory, try `sudo nvidia-smi --ecc-config=0` and reboot system.
101
-
102
- > **Note**<br />
103
- > Tensor parallel is available to perform inference on multiple GPUs. Add `--tp=<num_gpu>` on `chat` to enable runtime TP.
104
-
105
- #### Serving with gradio
106
-
107
- ```shell
108
- python3 -m lmdeploy.serve.gradio.app ./workspace
109
- ```
110
-
111
- ![](https://github.com/InternLM/lmdeploy/assets/67539920/08d1e6f2-3767-44d5-8654-c85767cec2ab)
112
-
113
- #### Serving with Triton Inference Server
114
-
115
- Launch inference server by:
116
-
117
- ```shell
118
- bash workspace/service_docker_up.sh
119
- ```
120
-
121
- Then, you can communicate with the inference server by command line,
122
-
123
- ```shell
124
- python3 -m lmdeploy.serve.client {server_ip_addresss}:33337
125
- ```
126
-
127
- or webui,
128
-
129
- ```shell
130
- python3 -m lmdeploy.serve.gradio.app {server_ip_addresss}:33337
131
- ```
132
-
133
- For the deployment of other supported models, such as LLaMA, LLaMA-2, vicuna and so on, you can find the guide from [here](docs/en/serving.md)
134
-
135
- ### Inference with PyTorch
136
-
137
- For detailed instructions on Inference pytorch models, see [here](docs/en/pytorch.md).
138
-
139
- #### Single GPU
140
-
141
- ```shell
142
- python3 -m lmdeploy.pytorch.chat $NAME_OR_PATH_TO_HF_MODEL \
143
- --max_new_tokens 64 \
144
- --temperture 0.8 \
145
- --top_p 0.95 \
146
- --seed 0
147
- ```
148
-
149
- #### Tensor Parallel with DeepSpeed
150
-
151
- ```shell
152
- deepspeed --module --num_gpus 2 lmdeploy.pytorch.chat \
153
- $NAME_OR_PATH_TO_HF_MODEL \
154
- --max_new_tokens 64 \
155
- --temperture 0.8 \
156
- --top_p 0.95 \
157
- --seed 0
158
- ```
159
-
160
- You need to install deepspeed first to use this feature.
161
-
162
- ```
163
- pip install deepspeed
164
- ```
165
-
166
- ## Quantization
167
-
168
- ### Step 1. Obtain Quantization Parameters
169
-
170
- First, run the quantization script to obtain the quantization parameters.
171
-
172
- > After execution, various parameters needed for quantization will be stored in `$WORK_DIR`; these will be used in the following steps..
173
-
174
- ```
175
- python3 -m lmdeploy.lite.apis.calibrate \
176
- --model $HF_MODEL \
177
- --calib_dataset 'c4' \ # Calibration dataset, supports c4, ptb, wikitext2, pileval
178
- --calib_samples 128 \ # Number of samples in the calibration set, if memory is insufficient, you can appropriately reduce this
179
- --calib_seqlen 2048 \ # Length of a single piece of text, if memory is insufficient, you can appropriately reduce this
180
- --work_dir $WORK_DIR \ # Folder storing Pytorch format quantization statistics parameters and post-quantization weight
181
-
182
- ```
183
-
184
- ### Step 2. Actual Model Quantization
185
-
186
- `LMDeploy` supports INT4 quantization of weights and INT8 quantization of KV Cache. Run the corresponding script according to your needs.
187
-
188
- #### Weight INT4 Quantization
189
-
190
- LMDeploy uses AWQ algorithm for model weight quantization
191
-
192
- > Requires input from the $WORK_DIR of step 1, and the quantized weights will also be stored in this folder.
193
-
194
- ```
195
- python3 -m lmdeploy.lite.apis.auto_awq \
196
- --w_bits 4 \ # Bit number for weight quantization
197
- --w_sym False \ # Whether to use symmetric quantization for weights
198
- --w_group_size 128 \ # Group size for weight quantization statistics
199
- --work_dir $WORK_DIR \ # Directory saving quantization parameters from Step 1
200
- ```
201
-
202
- #### KV Cache INT8 Quantization
203
-
204
- In fp16 mode, kv_cache int8 quantization can be enabled, and a single card can serve more users.
205
- First execute the quantization script, and the quantization parameters are stored in the `workspace/triton_models/weights` transformed by `deploy.py`.
206
-
207
- ```
208
- python3 -m lmdeploy.lite.apis.kv_qparams \
209
- --work_dir $WORK_DIR \ # Directory saving quantization parameters from Step 1
210
- --turbomind_dir $TURBOMIND_DIR \
211
- --kv_sym False \ # Whether to use symmetric or asymmetric quantization.
212
- --num_tp 1 \ # The number of GPUs used for tensor parallelism
213
- ```
214
-
215
- Then adjust `workspace/triton_models/weights/config.ini`
216
-
217
- - `use_context_fmha` changed to 0, means off
218
- - `quant_policy` is set to 4. This parameter defaults to 0, which means it is not enabled
219
-
220
- Here is [quantization test results](./docs/en/quantization.md).
221
-
222
- > **Warning**<br />
223
- > runtime Tensor Parallel for quantilized model is not available. Please setup `--tp` on `deploy` to enable static TP.
224
-
225
- ## Contributing
226
-
227
- We appreciate all contributions to LMDeploy. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline.
228
-
229
- ## Acknowledgement
230
-
231
- - [FasterTransformer](https://github.com/NVIDIA/FasterTransformer)
232
- - [llm-awq](https://github.com/mit-han-lab/llm-awq)
233
-
234
- ## License
235
-
236
- This project is released under the [Apache 2.0 license](LICENSE).
 
31
 
32
  ______________________________________________________________________
33