luodian's picture
Update app.py
db322fd verified
import gradio as gr
from transformers import AutoModelForCausalLM, AutoProcessor, TextIteratorStreamer
import librosa
from threading import Thread
import spaces
def split_audio(audio_arrays, chunk_limit=480000):
CHUNK_LIM = chunk_limit
audio_splits = []
# Split the loaded audio to 30s chunks and extend the messages content
for i in range(
0,
len(audio_arrays),
CHUNK_LIM,
):
audio_splits.append(audio_arrays[i : i + CHUNK_LIM])
return audio_splits
def user(audio, text, chat_history):
if audio is not None:
chat_history.append(gr.ChatMessage(role="user", content={"path": audio, "alt_text": "Audio"}))
chat_history.append({"role": "user", "content": text})
return "", chat_history
@spaces.GPU
def process_audio(audio, text, chat_history):
conversation = [
{
"role": "user",
"content": [
],
},
]
audio_path = audio
audio = librosa.load(audio, sr=16000)[0]
if audio is not None:
splitted_audio = split_audio(audio)
for au in splitted_audio:
conversation[0]["content"].append(
{
"type": "audio_url",
"audio": "placeholder",
}
)
# chat_history.append(gr.ChatMessage(role="user", content={"path": audio_path, "alt_text": "Audio"}))
conversation[0]["content"].append(
{
"type": "text",
"text": text,
}
)
# chat_history.append({"role": "user", "content": text})
# Set up the streamer for token generation
streamer = TextIteratorStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True)
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = processor(text=prompt, audios=splitted_audio, sampling_rate=16000, return_tensors="pt", padding=True)
inputs = {k: v.to("cuda") for k, v in inputs.items()}
# Set up generation arguments including max tokens and streamer
generation_args = {
"max_new_tokens": 4096,
"streamer": streamer,
"eos_token_id":151645,
"pad_token_id":151643,
**inputs
}
# Start a separate thread for model generation to allow streaming output
chat_history.append({"role": "assistant", "content": ""})
thread = Thread(
target=model.generate,
kwargs=generation_args,
)
thread.start()
for character in streamer:
chat_history[-1]['content'] += character
yield chat_history
with gr.Blocks() as demo:
gr.Markdown("## 🎙️ Aero-1-Audio")
gr.Markdown(
"""
![logo](./examples/aero-1-audio.png)
Aero-1-Audio is a lightweight audio-language model with only 1.5 billion parameters, trained on 50,000 hours of high-quality audio data. Despite its compact size, it supports a wide range of tasks, such as Automatic Speech Recognition (ASR), Basic Audio Understanding, Audio Instruction Following, and Scene Audio Analysis.
Notably, Aero-1-Audio excels at lossless ASR on ultra-long audio—up to 16 minutes—without the need for audio segmentation.
[Github](https://github.com/EvolvingLMMs-Lab/Aero-1/blob/main/README.md) | [Playground](https://huggingface.co/spaces/lmms-lab/Aero-1-Audio-Demo) | [Model Checkpoints](https://huggingface.co/lmms-lab/Aero-1-Audio-1.5B) | [Evaluation Results](https://github.com/EvolvingLMMs-Lab/lmms-eval/pull/658) | [Cookbook](https://www.lmms-lab.com/posts/lmms-lab-docs/aero_audio/)
To explore its capabilities, you can upload your own audio or record your voice directly.
Or simply start by trying the example demo below.
⚠️ Disclaimer: Aero-1-Audio is still under active development. Occasional inaccuracies may occur. We appreciate your understanding and welcome any feedback to help us make it better.
"""
)
chatbot = gr.Chatbot(type="messages")
with gr.Row(variant="compact", equal_height=True):
audio_input = gr.Audio(label="Speak Here", type="filepath")
text_input = gr.Textbox(label="Text Input", placeholder="Please transcribe this audio for me", interactive=True)
with gr.Row():
chatbot_clear = gr.ClearButton([text_input, audio_input, chatbot], value="Clear")
chatbot_submit = gr.Button("Submit", variant="primary")
chatbot_submit.click(
user,
inputs=[audio_input, text_input, chatbot],
outputs=[text_input, chatbot],
queue=False
).then(
process_audio,
inputs=[audio_input, text_input, chatbot],
outputs=[chatbot],
)
gr.Examples(
[
["Please transcribe the audio for me", "./examples/elon_musk.mp3"],
["Please transcribe the audio for me", "./examples/nvidia_conference.mp3"],
["Please follow the instruction in the audio", "./examples/audio_instruction.wav"],
["What is the primary instrument featured in the solo of this track?", "./examples/music_under.wav"],
["What weather condition can be heard in the audio?", "./examples/audio_understand.wav"],
],
inputs=[text_input, audio_input],
label="Examples",
)
if __name__ == "__main__":
processor = AutoProcessor.from_pretrained("lmms-lab/Aero-1-Audio-1.5B", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("lmms-lab/Aero-1-Audio-1.5B", device_map="cuda", torch_dtype="auto", attn_implementation="sdpa", trust_remote_code=True)
demo.launch()