File size: 5,886 Bytes
9346f1c
8b28d2b
9346f1c
4596a70
2a5f9fb
6763f93
 
 
83431d1
09c7b10
2a5f9fb
1ffc326
8c49cb6
 
 
 
 
 
7ecad78
8c49cb6
acd8e8a
 
 
b351f32
acd8e8a
df66f6e
 
 
 
37b74a1
 
 
 
 
 
 
 
 
2f420b7
8c49cb6
2a73469
10f9b3c
50df158
d084b26
37b74a1
8b28d2b
d084b26
046ddc7
d084b26
37b74a1
 
 
 
 
 
d084b26
 
 
 
 
 
37b74a1
 
 
 
 
 
d084b26
 
 
26286b2
a885f09
35850bf
2a73469
f5f1257
a6fb1be
 
 
f5f1257
a6fb1be
aa10f5f
a6fb1be
 
 
 
 
fc52117
614ee1f
35850bf
 
83431d1
944c822
 
a6fb1be
 
35850bf
 
83431d1
35850bf
 
2f36d9f
35850bf
 
 
 
c96beeb
f5f1257
a6fb1be
35850bf
ad9004c
 
 
 
c96beeb
 
f5f1257
e5a7fef
6ec681c
4215684
f5f1257
 
 
 
 
35850bf
00599d4
 
 
 
 
 
 
c96beeb
00599d4
 
83431d1
ff466fd
 
 
35850bf
0b77b16
becab7c
 
0b77b16
 
becab7c
0b080ed
becab7c
 
8ed80aa
becab7c
0b77b16
 
83431d1
 
4b72f1c
0b77b16
 
f257792
 
0b77b16
01233b7
58733e4
7ecad78
6e8f400
10f9b3c
8cb7546
982779d
35850bf
f2bc0a5
becab7c
 
0227006
046ddc7
 
 
 
 
 
 
 
 
d16cee2
10f9b3c
a2790cb
10f9b3c
37b74a1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from gradio.components.textbox import Textbox
from gradio.components.dataframe import Dataframe
from gradio.components.checkboxgroup import CheckboxGroup

# from fastchat.serve.monitor.monitor import build_leaderboard_tab, build_basic_stats_tab, basic_component_values, leader_component_values

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
    LINKS,
)
from src.display.css_html_js import (
    custom_css,
    CSS_EXTERNAL,
    JS_EXTERNAL,
)
from src.display.utils import (
    AutoEvalColumn,
    fields,
)
from src.envs import (
    API,
    EVAL_DETAILED_RESULTS_PATH,
    EVAL_RESULTS_PATH,
    EVAL_DETAILED_RESULTS_REPO,
    REPO_ID,
    RESULTS_REPO,
    TOKEN,
)
from src.populate import get_leaderboard_df


def restart_space():
    API.restart_space(repo_id=REPO_ID)


### Space initialisation
try:
    print(EVAL_DETAILED_RESULTS_REPO)
    snapshot_download(
        repo_id=EVAL_DETAILED_RESULTS_REPO,
        local_dir=EVAL_DETAILED_RESULTS_PATH,
        repo_type="dataset",
        tqdm_class=None,
        etag_timeout=30,
        token=TOKEN,
    )
except Exception:
    restart_space()
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO,
        local_dir=EVAL_RESULTS_PATH,
        repo_type="dataset",
        tqdm_class=None,
        etag_timeout=30,
        token=TOKEN,
    )
except Exception:
    restart_space()


LEADERBOARD_DF = get_leaderboard_df(RESULTS_REPO)


def GET_DEFAULT_TEXTBOX():
    return gr.Textbox("", placeholder="πŸ” Search Models... [press enter]", label="Filter Models by Name")


def GET_DEFAULT_CHECKBOX():
    print("Choices:", [c.name for c in fields(AutoEvalColumn) if not c.hidden])
    return gr.CheckboxGroup(
        choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden],
        label="Select Columns to Display",
        value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
    )


def init_leaderboard(dataframes):
    subsets = list(dataframes.keys())

    with gr.Row():
        selected_subset = gr.Dropdown(choices=subsets, label="Select Dataset Subset", value=subsets[-1])
        research_textbox = GET_DEFAULT_TEXTBOX()
        selected_columns = GET_DEFAULT_CHECKBOX()

    data = dataframes[subsets[-1]]

    with gr.Row():
        datatype = [c.type for c in fields(AutoEvalColumn)]
        df = gr.Dataframe(data, datatype=datatype, type="pandas")

    def refresh(subset):
        global LEADERBOARD_DF
        LEADERBOARD_DF = get_leaderboard_df(RESULTS_REPO)
        default_columns = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default]

        return update_data(subset, None, default_columns), GET_DEFAULT_TEXTBOX(), GET_DEFAULT_CHECKBOX()

    def update_data(subset, search_term, selected_columns):
        print("Subset:", subset)
        print("Search Term:", search_term)
        print("Selected Columns:", selected_columns)
        filtered_data = dataframes[subset]
        if search_term:
            filtered_data = filtered_data[dataframes[subset]["Model Name"].str.contains(search_term, case=False)]
        filtered_data.sort_values(by="Total", ascending=False, inplace=True)
        selected_columns = [c.name for c in fields(AutoEvalColumn) if c.name in selected_columns]
        selected_data = filtered_data[selected_columns]
        return gr.DataFrame(
            selected_data,
            type="pandas",
            datatype=[c.type for c in fields(AutoEvalColumn) if c.name in selected_columns],
        )

    with gr.Row():
        refresh_button = gr.Button("Refresh")
        refresh_button.click(
            refresh,
            inputs=[
                selected_subset,
            ],
            outputs=[df, research_textbox, selected_columns],
            concurrency_limit=20,
        )

    selected_subset.change(update_data, inputs=[selected_subset, research_textbox, selected_columns], outputs=df)
    research_textbox.submit(update_data, inputs=[selected_subset, research_textbox, selected_columns], outputs=df)
    selected_columns.change(update_data, inputs=[selected_subset, research_textbox, selected_columns], outputs=df)


def init_detailed_results():
    with gr.Row():
        gr.HTML(
            """\
<iframe
  src="https://huggingface.co/datasets/lmms-lab/LiveBenchDetailedResults/embed/viewer/"
  frameborder="0"
  width="100%"
  height="800px"
></iframe>
"""
        )


HEAD = "".join(
    [f'<link rel="stylesheet" href="{css}">' for css in CSS_EXTERNAL]
    + [f'<script src="{js}" crossorigin="anonymous"></script>' for js in JS_EXTERNAL]
)

demo = gr.Blocks(css=custom_css, head=HEAD)
with demo:
    gr.HTML(TITLE)
    gr.HTML(LINKS)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… LiveBench Results", elem_id="llm-benchmark-tab-table", id=0):
            init_leaderboard(LEADERBOARD_DF)

        with gr.TabItem("πŸ“ Detailed Results", elem_id="llm-benchmark-tab-table", id=2):
            init_detailed_results()

    # with gr.Row():
    #     with gr.Accordion("πŸ“™ Citation", open=False):
    #         citation_button = gr.Textbox(
    #             value=CITATION_BUTTON_TEXT,
    #             label=CITATION_BUTTON_LABEL,
    #             lines=20,
    #             elem_id="citation-button",
    #             show_copy_button=True,
    #         )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()