File size: 2,175 Bytes
9d22eee
2a5f9fb
 
df66f6e
 
1ffc326
efeee6d
37b74a1
9d22eee
 
 
314f91a
2a5f9fb
 
 
 
 
 
 
 
 
 
 
37b74a1
efeee6d
9d22eee
 
94d4dbb
f5f1257
 
 
37b74a1
15d3941
9d22eee
 
cb5cde2
9d22eee
 
 
2a5f9fb
37b74a1
efeee6d
2a5f9fb
 
 
 
 
 
 
 
 
37b74a1
efeee6d
2a5f9fb
9d22eee
2a5f9fb
9833cdb
37b74a1
2a5f9fb
 
 
 
 
 
 
 
b1a1395
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from dataclasses import dataclass, make_dataclass
from enum import Enum

import pandas as pd

from src.about import Tasks


def fields(raw_class):
    return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]


# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False
    never_hidden: bool = False


## Leaderboard columns
auto_eval_column_dict = []
# Init
# auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(
    ["model", ColumnContent, ColumnContent("Model Name", "str", True, True, never_hidden=True)]
)
# Scores
auto_eval_column_dict.append(["Overall", ColumnContent, ColumnContent("Total", "number", True)])
for task in Tasks:
    auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
auto_eval_column_dict.append(["dataset_version", ColumnContent, ColumnContent("Dataset Version", "str", False, True)])

# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)


## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn:  # Queue column
    model = ColumnContent("model", "markdown", True)
    revision = ColumnContent("revision", "str", True)
    private = ColumnContent("private", "bool", True)
    precision = ColumnContent("precision", "str", True)
    weight_type = ColumnContent("weight_type", "str", "Original")
    status = ColumnContent("status", "str", True)


## All the model information that we might need
@dataclass
class ModelDetails:
    name: str
    display_name: str = ""
    symbol: str = ""  # emoji


# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]

EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]

BENCHMARK_COLS = [t.value.col_name for t in Tasks]